
Last Updated on 2024/03/12

SpamOverflow Software Architecture
Semester 1, 2024 Evan Hughes, Brae Webb and Richard Thomas

Summary
In this assignment, you will demonstrate your ability to design, implement, and deploy a web API that canprocess a high load, i.e. a scalable application. You are to deloy an API for scanning and filtering spam/ma-licious emails. Specially your application needs to support:

• Scanning an email via an API request.
• Providing access to a specified REST API, e.g. for use by front-end interfaces and internal teams.
• Remaining responsive while scanning emails.

Your service will be deployed to AWS and will undergo automated correctness and load-testing to ensureit meets the requirements.
1 Introduction
For this assignment, you are working for SpamOverflow, a new competitor in the email security space.SpamOverflow uses a microservices based architecture to implement their new malicious email filteringplatform. The CEO saw on your resume that you are taking Software Architecture and has assigned you todesign and implement a service. This service must be scalable to cope with the anticipated large influx ofemails.
Requirements Email filtering software can filter email as it arrives or after. SpamOverflow will implementa service that does not impede the flow of traffic (i.e. does not prevent the email arriving). It will receive anAPI call when the mail server receives an email message. The service then pulls the email from the user’sinbox as fast as it can to prevent the user from seeing the malicious email or clicking any links.Commercial email providers send an API request for each email received. For optimal performancethis service needs to be able to handle a large number of requests in a short period of time, so as to notmiss any emails.Since these emails can be dangerous, the service must be able to report that it is bad or good in a timelymanner. Though genuine emails that are incorrectly marked as dangerous should be returned to the useras quickly as possible.Persistence is an important characteristic of the platform. Customers will want to analyse why emailswere flagged after the fact. Upon receiving an email scan request, and after filtering, the system mustguarantee that the data has been saved to persistent storage before returning a success response.
2 Interface
As you are operating in a microservices context, other service providers have been given an API specifi-cation for your service. They have been developing their services based on this specification so you mustmatch it exactly.The interface specification is available to all service owners online:

https://csse6400.uqcloud.net/assessment/spamoverflow

© The University of Queensland 2024 Page 1

https://csse6400.uqcloud.net/assessment/spamoverflow

3 Implementation
The following constraints apply to the implementation of your assignment solution.
3.1 SpamHammer
You have been provided with a command line tool called spamhammer that can be used to scan emails formalicious content. This tool is developed by Dr. Richardson who is an AI and linguistic expert. The toolhas varying performance, roughly related to the length of the content. You will have to work around thisbottleneck in the design and development of your parts of the system.Your service must utilise the spamhammer command line tool provided for this assignment. The com-piled binaries are available in the tool’s GitHub repository: https://github.com/CSSE6400/spamhammer.

Warning
You are not allowed to reimplement or modify this tool.
This tool is not as magical as it sounds. For the purposes of this assignment, in the API specification youwill notice the metadata->spamhammer field in the POST body. This is a setting which decides whetherthe email is malicious and how long processing should take. Demonstrations are provided in the repositoryto show how to use the tool to generate your own examples. You must not use this field to simplify thetask of scanning the email.

3.2 Similarity
Dr. Richardson has also provided some advice to help you with filtering through the emails. She has sug-gested that you use a similarity metric to compare the body of emails to previously known bad emails. Thedoctor explains it as “many of the emails we have seen with our first customers have the same contentand structure it is just that the link or ‘Dear <name>’ is slightly different”.With this knowledge you have found a common method of getting the difference between documentscalled the Cosine Similarity1 which is explained in these videos.

• https://www.youtube.com/watch?v=e9U0QAFbfLI

• https://www.youtube.com/watch?v=Dd16LVt5ct4

For the purposes of the assignment you may build up a database of known bad emails during theoperation of your API. You must only use the body of the email content to compare similarity.
Info
Dr. Richardson emphasises that the similarity metric is not a replacement for the scanner and is anoptional way to improve the efficiency of the system.

3.3 AWS Services
Please make note of the AWS services2 that you can use in the AWS Learner Lab, and the limitations thatare placed on the usage of these services. To view this page you need to be logged in to your AWS LearnerLab environment and have a lab open.

1https://www.learndatasci.com/glossary/cosine-similarity/2https://labs.vocareum.com/web/2460291/1564816.0/ASNLIB/public/docs/lang/en-us/README.html#
services

© The University of Queensland 2024 Page 2

https://github.com/CSSE6400/spamhammer
https://www.learndatasci.com/glossary/cosine-similarity/
https://www.youtube.com/watch?v=e9U0QAFbfLI
https://www.youtube.com/watch?v=Dd16LVt5ct4
https://labs.vocareum.com/web/2460291/1564816.0/ASNLIB/public/docs/lang/en-us/README.html#services
https://www.learndatasci.com/glossary/cosine-similarity/
https://labs.vocareum.com/web/2460291/1564816.0/ASNLIB/public/docs/lang/en-us/README.html#services
https://labs.vocareum.com/web/2460291/1564816.0/ASNLIB/public/docs/lang/en-us/README.html#services

3.4 External Services
You may not use services or products from outside of the AWS Learner Lab environment. For example,you may not host instances of the spamhammer command line tool on another cloud platform (e.g. GoogleCloud).You may not use services or products that run on AWS infrastructure external to your Learner Labenvironment. For example, you may not deploy a third-party product like MongoDB Atlas on AWS andthen use it from your service.You may not deploy machine learning or GPU backed services.
4 Submission
This assignment has three submissions.

1. March 25th – API Functionality
2. April 12th – Deployed to Cloud
3. May 3rd – Scalable Application

All submissions are due at 15:00 on the specified date. Your solution for each submission must be com-mitted and pushed to the GitHub repository specified in Section 4.3.Each submission is to be tagged3 to indicate which commit is to be marked. The tags that you mustuse are:
• stage-1 for API Functionality, due on March 25th

• stage-2 for Deployed to Cloud, due on April 12th

• stage-3 for Scalable Application, due on May 3rd

When marking a stage, we will checkout the commit you have tagged for that stage. This allows you tomake a conscious decision, if you wish to make a late submission. We will mark the late submission thatyou have tagged for the stage. Late penalties will be applied, as described in the course profile.
Note: Experience has shown that the large majority of students who make a late submission, losemore marks from the late penalty than they gain from any improvements they make to their solution.We strongly encourage you to submit your work on-time.If you forget to tag your submission, we will checkout and mark the latest commit that you made tothe main branch before the submission deadline. You should commit and push your work to your repos-itory regularly. If a misconduct case is raised about your submission, a history of regular progress on theassignment through a series of commits could support your argument that the work was your own.Extension requests must be made prior to the submission deadline via my.UQ4.

3Atlassian has a good tutorial about Git tag, if you are not familiar with tagging. See: https://www.atlassian.com/git/
tutorials/inspecting-a-repository/git-tag.4https://my.uq.edu.au/

© The University of Queensland 2024 Page 3

https://my.uq.edu.au/
https://www.atlassian.com/git/tutorials/inspecting-a-repository/git-tag
https://www.atlassian.com/git/tutorials/inspecting-a-repository/git-tag
https://my.uq.edu.au/

Your repository must contain everything required to successfully deploy your application.
4.1 API Functionality Submission
Your first submission must include the following in your repository:

• Docker container (Dockerfile) of your implementation of the service API, including the source codeand a mechanism to build and run the service.5
• A local.sh script that can be used to build and run your service locally. Where your container willbe launched with port 8080 being passed from the container to the testing environment and yourservice must be available at http://localhost:8080/.

We will run a suite of tests against your API on this endpoint.
4.2 Deployed to Cloud & Scalabiliity Submissions
The second and third submissions must include all of the following in your repository:

• Your implementation of the service API, including the source code and a mechanism to build theservice.6
• Terraform code that can provision your service in a fresh AWS environment.
• A deploy.sh script that can use your Terraform code to deploy your application. This scriptmust bein the top-level of your repository. This script may perform other tasks as required.

When deploying your second and third submissions to mark, we will follow reproducible steps, outlinedbelow. You may re-create the process yourself.
1. Your Git repository will be checked out locally.
2. AWS credentials will be copied into your repository in the top-level directory, in a file calledcredentials.
3. The script deploy.sh in the top-level of the repository will be run.
4. The deploy.sh script must create a file named api.txt which contains the URL at which your APIis deployed, e.g. http://my-api.com/ or http://123.456.789.012/.
5. We will run automated functionality and load-testing on the URL provided in the api.txt file.

Important Note: Ensure your service does not exceed the resource limits of AWS Learner Labs. For
example, AWS will deactivate your account if more than fifteen EC2 instances are running.

4.3 GitHub Repository
You will be provisioned with a private repository on GitHub for this assignment, via GitHub Classroom.You must click on the link below and associate your GitHub username with your UQ student ID in theClassroom.

https://classroom.github.com/a/whdIS1AEAssociating your GitHub username with another student’s ID, or getting someone else to associate theirGitHub username with your student ID, is academic misconduct7.If for some reason you have accidentally associated your GitHub username with the wrong student ID,contact the course staff as soon as possible.
5If you use external libraries, ensure that you pin the versions to avoid external changes breaking your application.6If you use external libraries, ensure that you pin the versions to avoid external changes breaking your application.7https://my.uq.edu.au/information-and-services/manage-my-program/student-integrity-and-conduct/

academic-integrity-and-student-conduct

© The University of Queensland 2024 Page 4

https://classroom.github.com/a/whdIS1AE
https://my.uq.edu.au/information-and-services/manage-my-program/student-integrity-and-conduct/academic-integrity-and-student-conduct
https://my.uq.edu.au/information-and-services/manage-my-program/student-integrity-and-conduct/academic-integrity-and-student-conduct
https://my.uq.edu.au/information-and-services/manage-my-program/student-integrity-and-conduct/academic-integrity-and-student-conduct

4.4 Tips
Terraform plan/apply hanging If your terraform plan or terraform apply command hangs withoutany output, check your AWS credentials. Using credentials of an expired Learner Lab session will causeTerraform to hang.
Fresh AWS Learner Lab Your AWS Learner Lab can be reset using the reset button in the toolbar.

To ensure that you are not accidentally depending on anything specific to your Learner Lab environment,we recommend that you reset your lab prior to final submission. Note that resetting the lab can take aconsiderable amount of time, in the order of hours. You should do this at least 4 to 6 hours before thesubmission deadline. Please do not wait to the last minute.
Deploying with Docker In this course, you have been shown how to use Docker containers to deploy onECS. You may refer to the practical worksheets for a description of how to deploy with containers [1].
4.5 Fine Print
You can reproduce our process for deploying your application using our Docker image8.

» cat Dockerfile

1 FROM ubuntu:22.04

3 # Install terraform
4 RUN apt-get update \
5 && apt-get install -y unzip wget \
6 && rm -rf /var/lib/apt/lists/*
7 RUN wget https://releases.hashicorp.com/terraform/1.7.4/terraform_1.7.4_linux_amd64.

zip \
8 && unzip terraform_1.7.4_linux_amd64.zip -d /usr/local/bin \
9 && rm -rf terraform_1.7.4_linux_amd64.zip \

10 && chmod +x /usr/local/bin/terraform

12 # Install docker client
13 RUN apt-get update \
14 && apt-get install -y docker.io \
15 && rm -rf /var/lib/apt/lists/*

17 WORKDIR /workspace
18 CMD ["bash", "/workspace/deploy.sh"]

Our steps for deploying your infrastructure using this container are as follows. $REPO is the name ofyour repository, and $CREDENTIALS is the path where we will store your AWS credentials.
8https://ghcr.io/CSSE6400/csse6400-cloud-testing

© The University of Queensland 2024 Page 5

https://ghcr.io/CSSE6400/csse6400-cloud-testing
https://ghcr.io/CSSE6400/csse6400-cloud-testing

1 $ git clone git@github.com:CSSE6400/$REPO
2 $ cp $CREDENTIALS $REPO
3 $ docker run -v /var/run/docker.sock:/var/run/docker.sock -v $(pwd)/$REPO:/workspace

csse6400-cloud-testing
4 $ cat $REPO/api.txt # this will be used for load-testing

Note that the Docker socket of the host has been mounted. This enables running docker in the con-tainer. This has been tested on Mac OSX and Linux but may require WSL2 on Windows.
5 Criteria
Your assignment submission will be assessed on its ability to support the specified use cases. Testingis divided into functionality, deployment and scalability testing, corresponding to the three submissionstages of the assignment. Functionality testing is to ensure that your backend software and API meet theMVP requirements by satisfying the API specification without any excessive load. Deployment is to ensurethat this MVP can then be hosted in the target cloud provider. Quality testing is based upon several likelyuse case scenarios. The scenarios create different scaling requirements.
5.1 API Functionality
40% of the total marks for the assignment are for correctly implementing the API specification, irrespec-tive of whether it is able to cope with high loads. A suite of automated API tests will assess the correctnessof your implementation, via a sequence of API calls.
5.2 Deployed to Cloud
25% of the total marks for the assignment are for deploying a correctly implemented service to AWS irre-spective of whether it is able to cope with high loads. The deployment will be assessed by running a scriptthat deploys your service to AWS and then runs a suite of automated API tests to assess the correctnessof your implementation.
5.3 Scalable Application
The remaining 35% of the marks will be derived from how well your service handles various scenarios.These scenarios will require you to consider how your application performs under load. Examples of pos-sible scenarios are described below. These are not descriptions of specific tests that will be run, rather theyare examples of the types of tests that will be run.
Steady Stream Steady receipt of email messages at a rate of M per minute, fairly evenly spread acrossall customers. Approximately 20% of the messages are malicious.
Bad ‘News’ Stream Steady receipt of email messages at a rate of N per minute, fairly evenly spreadacross all customers. Approximately 80% of the messages are malicious.
Peaks and Troughs Periods of receipt of a high volume of email messages, followed by periods of lowvolume.

© The University of Queensland 2024 Page 6

High Value Customer The Department of Defence (DoD) has adopted SpamOverflow. They are a highvalue customer and you must ensure that their requests are handled quickly. All other customers have aservice level agreement (SLA) that guarantees a certain level of responsiveness. You cannot ignore theirrequests to only prioritise the DoD’s requests.
Leaked Directory A bad actor has managed to get the email addresses of all employees of <Large Com-pany>. They have sent a phishing email to all of the users advertising a pay raise with a link to a fake loginpage. The email is sent to all 10,000 employees at the same time.
Personalised Attack A bad actor has trained an AI model using social media profiles of targeted victims.They can generate personalised phishing email messages based on personal information. As the messagesare personalised, they can be of greatly different lengths and contain different content. These messagescan only be identified by SpamHammer. They have sent these phishing messages to 2,000 users at thesame time.
5.4 Marking
Persistence is a core functional requirement of the system. If your implementation does not save emailscans to persistent storage, your grade for the assignment will be capped at 4.Your persistence mechanism must be robust, so that it can cope with catastrophic failure of the system.If all running instances of your services are terminated, the system must be able to restart and guaranteethat it has not lost any data about emails for which it returned a success response to the caller. There willnot be a test that explicitly kills all services and restarts the system. This will be assessed based on theservices you use and how your implementation invokes those services. Not saving data to a persistentdata store, or returning a success response before the data has been saved, are the criteria that determinewhether you have successfully implemented persistence.Functionality of your service is worth 40% of the marks for the assignment. This is based on the suc-cessful implementation of the API specification given and the ability to use the given tool in your imple-mentation.Deploying your service is worth 25% of the marks for the assignment. This is based on the successfuldeployment, using Terraform, of your service to AWS and the ability to access the service via the API. Yourservice must be fully functional while deployed so the functionality tests can be run which determines themarks for deployment.Scaling your application to successfully handle the usage scenarios accounts for the other 35% of themarks. The scenarios described in section 5.3 provide guidance as to the type of scalability issues yoursystem is expected to handle. They are not literal descriptions of the exact loads that will be used. Testsrelated to scenarios that involve more complex behaviour will have higher weight than other tests.The scenarios will evaluate whether your service is being wasteful in resource usage. The amount ofresources deployed in your AWS account will be monitored to ensure that your service implements ascaling up and scaling down procedure.All stages of the assessment will be marked using automation and a subset of the tests will be released.These tests may consume a significant portion of your AWS credit. You are advised to be prudent in howmany times you execute these tests. The amount of tests to be released is at the Course Coordinator’sdiscretion.Please refer to the marking criteria at the end of this document.
5.4.1 Grade Improvement

Improving your application’s functionality in a later submission will be used to improve the grade you re-ceived for an earlier submission.

© The University of Queensland 2024 Page 7

Stage 1 Improvement If your stage 1 submission (API Functionality) performs poorly, you may improveyour grade for this stage in a later stage. This will occur if your deployed stage 2 or 3 submission passesmore of the functionality tests than your stage 1 submission. This new result will be used to recalculateyour grade for stage 1. (We will not rerun the local functionality tests in stages 2 or 3. We will only test yourdeployed application.)
Stage 2 Improvement Similarly, if your deployed stage 3 submission passes more of the functionalitytests than your stage 2 submission, this result will be used to recalculate your grade for stage 2.
Late Penalties If an earlier submission was late, the same late penalty will be applied to your improvedgrade. (e.g. If your stage 1 submission was 3 hours late, and in stage 2 your submission’s functionalityimproved from a grade of 4 to a grade of 6, your grade for stage 1 would be increased to a 5 after the onegrade point per 24 hours penalty was applied.)
6 Academic Integrity
As this is a higher-level course, you are expected to be familiar with the importance of academic integrityin general, and the details of UQ’s rules. If you need a reminder, review the Academic Integrity Modules9.Submissions will be checked to ensure that the work submitted is not plagiarised or of no academic merit.This is an individual assignment. You may not discuss details of approaches to solve the problem withother students in the course. The Grade Improvement rule (section 5.4.1) means that you may not discussdetails of any earlier submission stage with other students until two weeks after the final submission dateof May 3rd (i.e. May 20th).All code that you submitmust be your own work. You may not directly copy code that you have foundon-line to solve parts of the assignment. If you find ideas from on-line sources (e.g. Stack Overflow), youmust cite and reference10 these sources. Use the IEEE referencing style11 for citations and references. Ci-tations should be included in a comment at the location where the idea is used in your code. All referencesfor citationsmust be included in a file called refs.txt. This file must be in the top-level of your repository.You may use generative AI tools (e.g. Copilot) to assist you in writing code to implement your solutions.You may also use generative AI tools to help you test your implementations. Youmust include, in the top-level of your repository, a file called AI.md that indicates the generative AI tools that you used, how youused them, and the extent of their use. (e.g. All code was written by providing copilot with class descriptionsand then revising the generated code.)Uncited or unreferenced material, or unacknowledged use of generative AI tools, will be treated asnot being your own work. Significant amounts of cited or acknowledged work from other sources will beconsidered to be of no academic merit.
References
[1] E. Hughes and B. Webb, “Database & container deployment,” vol. 5 of CSSE6400 Practicals, The Uni-versity of Queensland, March 2023. https://csse6400.uqcloud.net/practicals/week05.pdf.

9https://web.library.uq.edu.au/library-services/it/learnuq-blackboard-help/
academic-integrity-modules10https://web.library.uq.edu.au/node/4221/211https://libraryguides.vu.edu.au/ieeereferencing/gettingstarted

© The University of Queensland 2024 Page 8

https://web.library.uq.edu.au/library-services/it/learnuq-blackboard-help/academic-integrity-modules
https://web.library.uq.edu.au/node/4221/2
https://libraryguides.vu.edu.au/ieeereferencing/gettingstarted
https://csse6400.uqcloud.net/practicals/week05.pdf
https://web.library.uq.edu.au/library-services/it/learnuq-blackboard-help/academic-integrity-modules
https://web.library.uq.edu.au/library-services/it/learnuq-blackboard-help/academic-integrity-modules
https://web.library.uq.edu.au/node/4221/2
https://libraryguides.vu.edu.au/ieeereferencing/gettingstarted

Cloud-Infrastructure Assignment Criteria

Criteria Standard
Exceptional (7) Advanced (6) Proficient (5) Functional (4) Developing (3) Little Evidence (2) No Evidence (1)

API Func-
tionality
40%

API passes at least85% of the full testsuite, including persis-tence.

API passes at least75% of the full testsuite, including persis-tence.

API passes at least65% of the full testsuite, including persis-tence.

API passes at least50% of the full testsuite.
API passes at least40% of the full testsuite.

API passes at least20% of the full testsuite.
API passes less than20% of the full testsuite.

Deployed
to Cloud
25%

Deployed API passesat least 85% of thefull test suite, includingpersistence.

Deployed API passesat least 75% of thefull test suite, includingpersistence.

Deployed API passesat least 65% of thefull test suite, includingpersistence.

Deployed API passesat least 50% of the fulltest suite.
Deployed API passesat least 40% of the fulltest suite.

Deployed API passesat least 20% of the fulltest suite.
Deployed API passesless than 20% of thefull test suite.

Scalable
Applica-
tion
35%

Nearly all complexscenarios are handledwell. Resources havebeen used efficiently(scale up & down).

Most complex scenar-ios are handled well.Resources have beenused efficiently (scaleup & down).

A few complex scenar-ios are handled, or re-source usage is not ef-ficient (scale down isimplemented poorly).

Simple scenarios arehandled well. or re-source usage is not ef-ficient (scale down isnot implemented).

Some simple scenar-ios have been handledwell.
Minimal simple sce-narios are handled. No scenarios are han-dled.

©TheUniversityofQueensland2024
Page9

	SpamOverflow
	Introduction
	Interface
	Implementation
	SpamHammer
	Similarity
	AWS Services
	External Services

	Submission
	API Functionality Submission
	Deployed to Cloud & Scalabiliity Submissions
	GitHub Repository
	Tips
	Fine Print

	Criteria
	API Functionality
	Deployed to Cloud
	Scalable Application
	Marking
	Grade Improvement

	Academic Integrity

