
Last Updated on 2024/04/21

Capstone Project Software Architecture
Semester 1, 2024 Richard Thomas & Brae Webb

Summary
Throughout the software architecture course, you have learnt about a subset of quality attributes of con-cern to software architects. You have also been exposed to a number of techniques to satisfy these at-tributes. Now, as the capstone project, you are required to

• propose a non-trivial software project,
• identify the primary quality attributes which would enable success of the project,
• design an architecture suitable for the aims of the project,
• deploy the architecture, utilising any techniques you have learnt in or out of the course, and
• evaluate and report on the success of the software project.

The successful completion of the project will result in three deliverables, namely,
i a proposal of a software project, the proposal must clearly indicate and prioritise two or three qualityattributes most important to the project’s success,
ii the developed software, as both source code, and a deployed artifact, and
iii a report which evaluates the success of the developed software relative to the chosen quality at-tributes.

Your software deliverable must include all supporting software (e.g. test suites or utilities) that are devel-oped to support the delivered software.
1 Introduction
We have looked at several core quality attributes in this course, and will continue to look at more overthe remainder of the semester. These attributes were selected because they are key concerns of manyreal-world software projects. In this project, you will have an opportunity to explore some of the fun ofindustry. You will take the role of an entrepreneur, software architecture, developer, and operations team.As entrepreneur, you have proposed a project idea. These proposals have been evaluated by your peersand the teaching team. You have been allocated to a project based on interest you have indicated by votingon proposals and on your previous coursework experience.As a team you now need to perform the roles of software architect, developer, and operations team.You should design the basic structure of the initial software architecture, based on the scope, functionality,quality attributes, and evaluation plan from the proposal. The details of the architecture are expected toevolve as you start implementing parts of the system.Part of the assessment will be how the architecture evolves in response to what you learn during de-velopment. You need to write Architectural Decision Records (ADRs) for each decision you make aboutthe design of the architecture [1]. These are to be recorded in your GitHub repository so that the markercan see how your architecture evolved and the reasons for the decisions you made.
© The University of Queensland 2024 Page 1



2 Software
You need to implement a software system that delivers a Minimum Viable Product (MVP)1. The MVP needsto implement a usable core of the system’s functionality, which demonstrates that the architecture coulddeliver the full system functionality. The MVP also needs to allow the software architecture to be testedto determine if it can deliver the project’s important quality attributes.You may renegotiate the scope of the system during the project, if you determine that certain aspectsof the original scope are not feasible within the project time constraints. The earlier you do this, the less itwill impact on your final result. You will not explicitly lose marks for renegotiating scope, unless the revisedscope limits your ability to adequately test important quality attributes. But, late changes to scope arelikely to have a flow-on effect that could reduce the quality of your final deliverables. This means that youshould attempt to implement some of the riskier parts of the project early.
3 Evaluation
You need to test the software system that you implement to demonstrate how well its architecture sup-ports delivering system functionality and its quality attributes. This evaluation should be based on theproposal’s evaluation plan, but should not be limited to only what is in that plan. You will be assessed onhow well you test your system in terms of both functionality and quality attributes. Discovering issueswith the system or its architecture during testing will not adversely affect your marks for the evaluationcomponent of the assessment.A section of your project report needs to summarise the test results and provide access to the full suiteof tests. You should automate as much of the testing as possible. Any manual tests need to be documentedso that they can be duplicated. The results of all manual tests need to be recorded in a test report. Thismay be a section of the project report, or it may be a separate document with a link to it from the projectreport. You need to include test code and test infrastructure in your project’s repository.
4 Report
The report should include the following content.
Title Name of your software project.
Abstract Summarise the key points of your document.
Changes Describe and justify any changes made to the project from what was outlined in the proposal.
Architecture Options What architectural design patterns were considered and their pros and cons.
Architecture Describe the MVP’s software architecture in detail.
Trade-Offs Describe and justify the trade-offs made in designing the architecture.
Critique Describe how well the architecture supports delivering the complete system.
Evaluation Summarise testing results and justify how well the software achieves its quality attributes.
Reflection Lessons learnt and what you would do differently.

1https://www.agilealliance.org/glossary/mvp/

© The University of Queensland 2024 Page 2

https://www.agilealliance.org/glossary/mvp/
https://www.agilealliance.org/glossary/mvp/


You do not need to have sections for each topic above, though your report needs to contain the contentsummarised above. For example, the description of the architecture could include discussion of trade-offs. Similarly, the critique and evaluation could be combined so that both are discussed in relation to anarchitecturally significant requirement (ASR) [2].When writing your report, you may assume that the reader is familiar with the project proposal. You willneed to describe any changes your team has made to the original proposal. A rationale should be providedfor each change. Small changes only need a brief summary of the reason for the change. Significantchanges to functionality of the MVP, or changes to important quality attributes, need a more detailedjustification for the change. You should provide a reference and link to the original proposal.Compare and contrast different architectural design patterns that could be used to deliver the system.Explain the pros and cons of each architectural design pattern in the context of the system’s functionalityand ASRs. Justify your choice of the architectural design pattern you used in your design.Describe the full architecture of your MVP in enough detail to give the reader a complete understandingof the architecture’s design. Use appropriate views, diagrams and commentary to describe the softwarearchitecture. You should describe parts of the detailed design that demonstrate how the architecture sup-ports delivering key quality attributes [2]. (e.g. If interoperability was a key quality attribute, you wouldneed to describe the parts of the detailed design that support this. For example, how you use the adapterdesign pattern to communicate with external services.)Describe any trade-offs made during the design of the architecture. Explain what were the competingissues2 and explain why you made the decisions that resulted in your submitted design.When describing the architecture and trade-offs, you should summarise and/or reference ADRs thatrelate to important decisions that affected your architecture.Your critique should discuss how well the architecture is suited to delivering the full system functionalityand quality attributes. Use test results to support your claims, where this can be shown through testing.For quality attributes that cannot be easily tested (e.g. extensibility, interoperability, ...), you will need toprovide an argument, based on your architectural design, about how the design supports or enables theattribute. Some quality attributes (e.g. scalability) may require both test results and argumentation todemonstrate how well the attributed is delivered.Summarise test plans and test results in the report. Provide links to any test plans, scripts or code inyour repository. Where feasible, tests should be automated. Describe how to run the tests. Ideally, youshould use GitHub Actions3 to run tests and potentially deploy artefacts.Your report should end with a reflection that summarises what you have learnt from designing andimplementing this project. It should include descriptions of what you would do differently, after the expe-rience of implementing the project. Describe potential benefits or improvements that may be deliveredby applying the lessons you have learnt during the project. You will not lose marks for identifying problemswith your architecture or software design.
5 Repository
Your team will be provisioned with a repository on GitHub. All source code, documentation and supportartefacts are to be committed to the repository.

• Model artefacts (e.g. Structurizr DSL or PUML files) should be stored in the /model directory.
• ADRs are to be stored in the /model/adrs directory.
• The report must be stored in the /report directory.
• The link to your demonstration video must be in a file called demo.md, in the root directory of yourrepository.

2“Forces” in design patterns terminology.3https://docs.github.com/en/actions

© The University of Queensland 2024 Page 3

https://docs.github.com/en/actions
http://www.cs.unc.edu/~stotts/COMP723-s15/patterns/forces.html
https://docs.github.com/en/actions


Do not commit large binary files to the repository. (i.e. Do not commit Word documents or frequentlychanging PDF files to the repository. Do not store your demonstration video in your repository.) It isrecommended that you use LaTeX, or possibly markdown, to write your report. If you use LaTeX, youshould use GitHub actions to produce a PDF of the report.Your final submission will be what is in the main branch of your repository at the due date of 15:00 on3 June 2024.
6 Academic Integrity
As this is a higher-level course, you are expected to be familiar with the importance of academic integrityin general, and the details of UQ’s rules. If you need a reminder, review the Academic Integrity Modules4.Submissions will be checked to ensure that the work submitted is not plagiarised.All code that you submit must be your own work or must be appropriately cited. If you find ideas, codefragments, or libraries from external sources (e.g. Stack Overflow), you must cite and reference5 thesesources. Use the IEEE referencing style6 for citations and references. Citations should be included in acomment at the location where the idea is used in your code. All references for citations must be includedin a file called refs.md. This file should be in the root directory of your repository.You are encouraged to use a generative AI tool (e.g. copilot) to help you write the source code forthis project. The expectation is that the software architecture and detailed design are your team’s ownwork. Create a file in the root directory of your repository called ai.md. In this file, describe how you usedgenerative AI to develop your project. (e.g. We prompted ChatGPT with a description of our design andrefined the provided code via further prompting and manually revising the code.) Provide examples ofprompts provided to any generative AI tool.In ai.md indicate which files contain code produced with the assistance of an AI tool. Estimate howmuch of the code was produced by the tool and how much was your own work.(e.g. logic.py 40% generated)You may use libraries to help implement your project. The library’s license must allow you to use it inthe context of your project. All libraries used in your project must be listed in a file called libs.md. Youmust include a link to each library’s homepage. This libs.md file must be in your repository’s root directory.Uncited, unreferenced or unacknowledged material will be treated as not being your own work. Signif-icant amounts of cited material from other sources will be considered to be of no academic merit. Havingan AI tool produce significant amounts of source code is acceptable, if the design is your own and you haveverified that the code is correct.
7 Demonstration
Your team needs to demonstrate your project’s functionality and how well it achieves its goals. This shouldinclude demonstrating how quality attributes are achieved, or briefly summarising how the architecturefacilitates delivering a quality attribute.Your project demonstration will be a video. Provide a link to the video in a file called demo.md, storedin the root directory of your repository. Do not store the video in your GitHub repository. The link may beto the video on a platform like YouTube, or a file sharing site from where the video may be downloaded. Ifyou upload the video to a platform like YouTube, you may make it private. If it is a private video, you mustshare it with richard.thomas@uq.edu.au, evan.hughes@uq.edu.au, mdarafat.hossain@uq.edu.au,
zaidul.alam@uq.edu.au, r.wibawa@uq.edu.au, and all of your team members. The video must remain

4https://web.library.uq.edu.au/library-services/it/learnuq-blackboard-help/
academic-integrity-modules5https://guides.library.uq.edu.au/referencing6https://libraryguides.vu.edu.au/ieeereferencing/gettingstarted

© The University of Queensland 2024 Page 4

https://web.library.uq.edu.au/library-services/it/learnuq-blackboard-help/academic-integrity-modules
https://guides.library.uq.edu.au/referencing
https://libraryguides.vu.edu.au/ieeereferencing/gettingstarted
https://web.library.uq.edu.au/library-services/it/learnuq-blackboard-help/academic-integrity-modules
https://web.library.uq.edu.au/library-services/it/learnuq-blackboard-help/academic-integrity-modules
https://guides.library.uq.edu.au/referencing
https://libraryguides.vu.edu.au/ieeereferencing/gettingstarted


available until at least 31 July 2024. Viewers must be able to easily see what is being demonstrated andread any text or images. Audio must be clear and comprehensible.The video should be approximately as follows.
3 min Introduction to the project.
3 min Demonstration of the functional requirements.
3 min Demonstration of the non-functional requirements.
3 min Overview of the software architecture.
3 min Summary of your reflection on lessons learnt from implementing the software.
The total duration of your video should be less than 15 minutes.
Introduction Briefly introduce the project context and summarise the delivered functional and non-functional requirements. Mention any differences between what was originally proposed, what was rene-gotiated, and what was delivered. Briefly explain why changes in scope were made. The person who mayhave approved a change in scope may not be the person marking your demonstration. If you did notdeliver everything in the revised scope of the project, the marker needs to know why that occurred.
FunctionalRequirements Demonstrate the key features of the software. You do not have time to demon-strate every feature of the software. Plan your time wisely to highlight the completeness and quality ofyour delivered system.
Non-Functional Requirements Show how well the software delivers its important quality attributes. Thismay take some thought and planning to demonstrate within a short time frame. Delivery of some non-functional requirements can be shown by test results. Delivery of other non-functional requirements maybe shown through a combination of tests, metrics, and commentary.For example, you cannot show ten minutes of k6 testing to demonstrate scalability. You could providescreenshots of different stages of the testing, or an edited video of parts of the testing. You would providecommentary summarising how the testing was done and explaining how well the system scaled underdifferent loads.For security, you could show results of simple fuzz testing of APIs. You could then show examples ofparts of your design, explaining how it demonstrates following key security design principles.For extensibility or interoperability, you could calculate one or more complexity metrics for parts of thedesign. You could then use the data from these metrics to support an argument as to why the design wasextensible or had a simple interface. For example, if many interfaces could be shown to have high cohesionand there was low coupling between different modules or services in the design, you could argue how thisshows that the design is likely to be extensible. You could measure documentation for interfaces or APIs,and use that to argue that mechanisms used to extend the design, or that the APIs, were comprehensible.These are examples to help you to start thinking about demonstrating how your design delivers non-functional requirements. They are not a definitive list of the only or best approaches. For the demonstra-tion, focus on the most important non-functional requirements for your project. You should discuss yourideas with course staff if you are unsure of the effectiveness of an approach.
Software Architecture Provide an overview the system’s architecture. Briefly explain how well it supportsdelivery of the MVP’s, and the full system’s, functional and non-functional requirements.
Reflection Summarise the lessons you learnt from implementing the software. What would you dodifferently and why? Explain how you would apply those lessons to design a different architecture ortake a different approach to implementing the project. Or, explain how the lessons learnt demonstratethat you made good choices at each stage of development.

© The University of Queensland 2024 Page 5



Presentation There are no constraints on who in your team presents in the video. One person couldpresent all parts of the video, or you could have different people presenting each part. Assume that theviewer has read the project proposal but may not yet have read the project report.
8 Grading Criteria
20% Extent to which project’s scope was delivered.
15% Suitability of architecture to deliver system goals.
20% Quality and thoroughness of testing.
25% Clarity, accuracy and completeness of architecture’s description.
20% Insightfulness of architecture’s evaluation.

© The University of Queensland 2024 Page 6



Criteria Standard
Exceptional (7) Advanced (6) Proficient (5) Functional (4) Developing (3) Little Evidence (2) No Evidence (1)

System
Scope
20%

MVP’s originally pro-posed functional &non-functional require-ments, or those agreed& documented earlyin the project, are fullydelivered.

MVP’s originally pro-posed functional &non-functional require-ments, or those agreed& documented early inthe project, are deliveredwith small variances.

MVP’s functional &non-functional require-ments were revised &documented later in theproject, and are almostfully delivered.

All important functional& non-functional re-quirements are deliveredbut some other require-ments are not, whetheror not original plan wasrevised.

Most important func-tional & non-functionalrequirements are de-livered, whether or notoriginal plan was revised.

Some important func-tional & non-functionalrequirements are de-livered, whether or notoriginal plan was revised.

Few important func-tional & non-functionalrequirements are de-livered, whether or notoriginal plan was revised.

Architecture
Suitability

15%

Delivered architecture,supplemented by thedesign reflection, is verywell suited to deliveringall specified functional &non-functional require-ments, including anappropriate level ofsecurity.

Delivered architecture,supplemented by thedesign reflection, is wellsuited to delivering al-most all specified func-tional & non-functionalrequirements, includingan appropriate level ofsecurity.

Delivered architecture,supplemented by thedesign reflection, is fairlywell suited to deliver-ing the key functional& non-functional re-quirements, including amostly appropriate levelof security.

Delivered architecture,supplemented by thedesign reflection, iscapable of deliveringmost key functional& non-functional re-quirements, including amostly appropriate levelof security.

Delivered architecture,supplemented by thedesign reflection, re-quires workarounds ina few cases to deliverkey functional & non-functional requirements.Design has one or twoobvious security issues.

Delivered architecture,supplemented by thedesign reflection, re-quires workarounds inseveral cases to deliverkey functional & non-functional requirements.Design has a few obvioussecurity issues.

Delivered architecture,supplemented by thedesign reflection, makesit difficult to delivermany functional & non-functional requirements.Design does not appearto consider securityissues.
Testing
Quality
20%

All functional & non-functional requirements,& architectural compo-nents are well tested (orare described well in atest plan) and, wherefeasible, are automated.

Most key functional &non-functional require-ments, & key architec-tural components arewell tested (or are de-scribed adequately ina test plan) and, wherefeasible, are mostlyautomated.

Most key functional &non-functional require-ments, & key architec-tural components arefairly well tested (or aredescribed fairly ade-quately in a test plan)and, where feasible,many are automated.

Most key functional &non-functional require-ments, & key architec-tural components arefairly well tested (or aredescribed fairly ade-quately in a test plan)and, with some attemptat automation.

Main test cases for mostkey functional & non-functional requirements,& key architectural com-ponents are fairly welltested (or have some in-formative description ina test plan).

Main test cases for a fewkey functional & non-functional requirements,& key architectural com-ponents are moderatelywell tested (or have ageneral description in atest plan).

Testing is poor, superfi-cial or extremely limited.Or, extent of testing can-not be determined fromsubmitted artefacts.

Architecture
Description

25%

Clear, accurate, concise& complete descriptionof all aspects of thearchitecture. Diagrams& narrative text comple-ment each other. Viewsenhance understand-ing all aspects of thearchitecture. Choice ofarchitecture, & decisionsabout design trade-offs,are well described.

Clear, accurate & mostlycomplete description ofthe architecture. Dia-grams & narrative textcomplement each other.Views support descrip-tion of the architecture.Choice of architecture, &decisions about impor-tant design trade-offs,are well described.

Mostly clear, accurate& complete descriptionof the architecture.Diagrams & narrativetext support each other.Views support somedescription of the ar-chitecture. Choice ofarchitecture, & decisionsabout most importantdesign trade-offs, areadequately described.

Fairly clear, & mostly ac-curate & complete, des-cription of the architec-ture. Diagrams & narra-tive text are consistent.Views provide little sup-port describing the archi-tecture. Choice of archi-tecture & decisions aboutsome important designtrade-offs, are fairly ade-quately described.

Some parts of the de-scription are unclear, in-accurate or incomplete.Most diagrams are rele-vant to the narrative textor a necessary diagram ismissing. Justification ofchoice of architecture isunclear. Decisions abouta few important designtrade-offs are fairly ade-quately described.

Some parts of the de-scription are inaccurateor incomplete, or manyparts are unclear. Somediagrams are relevantto the narrative text ora few necessary dia-grams are missing. Poorjustification of choiceof architecture. Fewdesign trade-offs areadequately described.

Many parts of the de-scription are unclear, in-accurate or incomplete.Few diagrams are rele-vant to the narrative textor many necessary dia-grams are missing. No,or very poor, justificationof choice of architecture.Trade-offs are poorly de-scribed.
Architecture
Evaluation

20%

Critique & evaluationclearly demonstrate thatthe delivered architec-ture, varied a little by thereflection comments,can deliver all functional& non-functional re-quirements of the fullsystem.

Critique & evaluationclearly demonstrate thatthe delivered archi-tecture, varied by thereflection comments,can deliver all functional& non-functional re-quirements of the fullsystem.

Critique & evaluationdemonstrate that thedelivered architecture,varied by the reflectioncomments, can deliverall important functional& non-functional re-quirements of the fullsystem.

Critique & evaluationdemonstrate that thedelivered architecture,varied by the reflectioncomments, can deliverall important functional& non-functional re-quirements of the MVP& part of the full system.

Critique & evaluationdemonstrate that thedelivered architecture,varied by the reflectioncomments, can deliverall important functional& non-functional re-quirements of the MVPbut little of the fullsystem.

Critique & evaluationdemonstrate that thedelivered architecture,varied by the reflectioncomments, can deliversome important func-tional & non-functionalrequirements of theMVP.

Critique & evaluationdemonstrate that thedelivered architecture,varied by the reflectioncomments, is unlikely todeliver most functionalor non-functional re-quirements of the MVP.Or, they are too unclearto determine.

©TheUniversityofQueensland2024
Page7



References
[1] R. Thomas, “Architectural decision records,” February 2023. https://csse6400.uqcloud.net/

handouts/adr.pdf.
[2] R. Thomas and B. Webb, “Architectural views,” February 2023. https://csse6400.uqcloud.net/

handouts/views.pdf.

© The University of Queensland 2024 Page 8

https://csse6400.uqcloud.net/handouts/adr.pdf
https://csse6400.uqcloud.net/handouts/adr.pdf
https://csse6400.uqcloud.net/handouts/views.pdf
https://csse6400.uqcloud.net/handouts/views.pdf

	Capstone Project
	Introduction
	Software
	Evaluation
	Report
	Repository
	Academic Integrity
	Demonstration
	Grading Criteria


