
Lecture Notes in Software Engineering

Containers
March 4, 2024

Brae Webb

Presented for the Software Architecture course
at the University of Queensland



Last Updated on 2024/03/03

Containers Software Architecture

March 4, 2024 Brae Webb

I don’t care if it works on your machine! We are not shipping your machine!
– Vidiu Platon

1 Introduction
As developers, we often find ourselves relying on some magical tools and technologies. Version con-
trol, operating systems, databases, and containers, to name a few. Containers, and specifically, Docker,
are magical tools which have gained wide-spread industry adoption. Over the past decade Docker has en-
abled some fanciful architectures and developer workflows. Docker is the proposed solution to the age-old
programmer proverb, “it works on my machine!”. However, before we subscribe to that belief, let’s see how
Docker actually works to learn what it is, and what it is not.

2 History and Fundamentals
Relative to other tools in the magical suite, Docker is new on the scene. Docker was first made available
publicly in 2013 at PyCon.1 Pitched to deliver the isolation benefits of Virtual Machines (VMs) while main-
taining efficient execution. Virtual machines themselves are a much older invention, dating back to the
1960s, around the time that UQ was having it’s first computer installed.2 The concept of a virtual machine,
unlike its implementation, is straight-forward — use software to simulate hardware. From there, one can
install an operating system on the simulated hardware and start using a completely isolated, completely
new computer without any additional hardware. Of course, this process puts great strain on the real hard-
ware and as such, VMs are deployed sparingly.

Hardware

Operating System

Hypervisor

Guest OS Guest OS

File System File System

App 1 App 2

(a) Two virtual machines running on a host

Hardware

Operating System

File System

App 1

File System

App 2
Docker Daemon

(b) Two containers running on a host

Figure 1: Comparison of virtual machines and containers

Unlike virtual machines, containers do not run on virtual hardware, instead, containers run on the op-
erating system of the host machine. The obvious advantage of this is containers run much more efficiently

1https://www.youtube.com/watch?v=wW9CAH9nSLs
2https://www.youtube.com/watch?v=DB1Y4GrfrZk

1

https://www.youtube.com/watch?v=wW9CAH9nSLs
https://www.youtube.com/watch?v=DB1Y4GrfrZk


than virtual machines. Containers however, manage to remain isolated and it is at this point that we should
explain how Docker actually works. Docker is built upon two individually fascinating technologies; names-
paces, and layered filesystems.

2.1 Namespaces
The first technology, namespaces, is built into the Linux kernel. Linux namespaces were first introduced
into the kernel in 2002, inspired by the concept introduced by the Plan 93 operating system from Bell
Labs in the 1980s. Namespaces enable the partitioning and thus, isolation, of various concepts managed
and maintained by an operating system. Initially namespaces were implemented to allow isolated filesys-
tems (the so-called ‘mount’ namespace). Eventually, as namespaces were expanded to include process
isolation, network isolation, and user isolation, the ability to mimic an entirely new isolated machine was
realised; containers were born.4

Namespaces provide a mechanism to create an isolated environment within your current operating
system. The creation of such an isolated environment with namespaces has been made quite easy —
you can create an isolated namespace with just a series of bash commands. Niklas Dzösch’s talk ‘Docker
without Docker’, uses just 84 lines of Go code (which Docker itself is written in), to create, well, Docker
without Docker.5 But namespaces are just the first technology which enables Docker. How do you pre-
populate these isolated environments with everything you need to run a program? To see what is in the
isolated environment, we would run ls which, oh, requires the ls binary. Furthermore, to even consider
running a command we need a shell to type it in, so, oh, we should also have a bash binary. And so on
until, oh, finally, we have a Linux kernel at least!6

2.2 Layered Filesystem
A core principle of Unix operating systems is that everything is a file. Naturally then, if we want to start
using an isolated environment, all we need to do is copy in all the files which together form an operating
system, right? Well, yes, kind of. In principle this is all you need do but this would hardly enable the
popularity Docker enjoys today.

Say that you want to send your coworker a Docker container which has nginx (a tool for routing web
traffic) setup in just the way you need to pass incoming traffic to various components of your application.
Let’s assume that you have setup nginx in Ubuntu. All you would need to do is zip up all the files which
compose the Ubuntu operating system (an impressively small 188MB), then all the files installed by ng-
inx (about 55MB) and finally all the configuration files which you have modified, somewhere in the order
of 1000 bytes or 1 KB. In total you are sending your coworker about 243MBs worth of data, less than a
gigabyte, so they are not too upset.

Now once we have finished developing our application and we are ready to package it up and send it
to the world. Rather than trying to support every known operating system, we bundle all our services in
Docker containers, one for nginx, one for mysql, one for our web application, etc, etc. If your application’s
containers are as popular as nginx, this means one billiondownloads of your container. At a size of 243MBs,
you have contributed 243 petabytes to the world’s collective bandwidth usage, and that is just your nginx
container.

Docker’s success over other containerisation applications comes from the way it avoids this looming
data disaster. A concept known as the layered, or overlayed, or the stacked filesystem solves the problem.
First proposed in the early 1990s, layered filesystems enable layers of immutable files to be stacked below

3https://p9f.org/
4Of course, containers in a rudamentry form existed before introduction to the linux kernel but we have to start somewhere.

https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
5https://www.youtube.com/watch?v=7H__eF6hvWg
6You might be asking yourself, wait but I have a Windows operating system and I can still run Docker, what gives? The answer,

ironically enough, is a virtual machine!

2

https://p9f.org/
https://p9f.org/
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://www.youtube.com/watch?v=7H__eF6hvWg


a top-level writable system. This has the effect of producing a seemingly mutable (or writable) filesystem
while never actually modifying the collection of immutable files. Whenever a immutable file is ‘written to’,
a copy of the file is made and all modifications are written to this file. When reading or listing files, the
filesystem overlays the layers of immutable files together with the layer of mutable files. This gives the
appearance of one homogeneous filesystem.

$ ls
passwords.txt help.me diary.md

diary.md

help.me help.me

passwords.txt

(a) Read operation in a layered filesystem

$ echo "1234" » passwords.txt

help.me

passwords.txt

help.me

diary.md

passwords.txt

(b) Write operation in a layered filesystem

Figure 2: Read and write operations in a layered filesystem. The leftmost column in each diagram repre-
sents the most recent ‘writable’ layer.

Docker uses this technique to reduce the amount of duplicated files. If you have Docker containers
which run nginx, MySQL, and Python but all containers run on Ubuntu, then your computer will only need
to store one copy of the Ubuntu filesystem. Each container will store the changes to the base operating
system required to install each application and project that layer over the immutable Ubuntu filesystem.

2.3 Summary
While Docker itself only came out in 2013, the two primary technologies which it is composed of, names-
paces and the layered filesystem, were around since the early 1990s. Docker combines these technologies
to enable applications to run in an isolated environment which can be efficiently replicated across differ-
ent host computers. The reproducibility of Docker containers, and the fact that they are so light weight,
makes them an ideal target for two important aspects of modern development; developers simulating
production environments locally, and duplicating production machines to scale for large loads of traffic.

3 Docker FROM scratch
Now that we understand the fundamentals of how Docker works, let’s start building our very first Docker
container. To follow along, you will need to have Docker installed on your computer7 and have access to
basic Unix command line applications.8

To start with, we will write a Dockerfile which builds a Docker image without an operating system
and just prints ‘Hello World’ [1]. The Docker ‘code’ is written in a Dockerfile which is then ‘compiled’ into a
Docker image and finally run as a Docker container. The first command in your Dockerfile should always
be FROM. This command tells Docker what immutable filesystem we want to start from, often, this will be
your chosen operating environment. In this exercise, since we do not want an operating system, we start
with FROM scratch, a no-op instruction that tells Docker to start with an empty filesystem.

Let’s get something in this container. For this, we will use the COPY command which copies files from the
host machine (your computer) into the container. For now, we will write COPY hello-world /, which says

7https://docs.docker.com/get-docker/
8For windows users, we recommend Windows Subsystem for Linux.

3

https://docs.docker.com/get-docker/


to copy a file from the current directory named hello-world into the root directory (/) of the container.
We do not yet have a hello-world file but we can worry about that later. Finally, we use the CMD command
to tell the container what to do when it is run. This should be the command which starts your application.

 FROM scratch
 COPY hello-world /
 CMD ["/hello-world"]

Next, we will need a minimal hello world program. Unfortunately, we will have to use C here as better
programming languages have a bit too much overhead. For everyone who has done CSSE2310, this should
be painfully familiar, create a main function, print hello world, with a new line, and return 0.

 #include <stdio.h>

 int main() {
 printf ("Hello World\n");
 return 0;
 }

Let’s try running this container.

Hint

Try to guess if this is going to work. Why? Why not?

First, the hello world program needs to be compiled into a binary file.

 >> gcc -o hello-world hello-world.c
 >> ls
 Dockerfile hello-world hello-world.c

Next we will use the Dockerfile to build a Docker image and run that image. Images are stored cen-
trally for a user account so to identify the image, we need to tag it when it is built, we will use ‘hello’.

 >> docker build --tag hello .
 >> docker run hello
 standard_init_linux.go:228: exec user process caused: no such file or

directory

Unless this is Docker’s unique way of saying hello world, something has gone terribly wrong. Here we
are illustrating the power of Docker isolation as well as the difficulty of not having an operating system.
This very simple hello world program still relies on other libraries in the operating system, libraries which
are not available in the empty Docker container. ldd tells us exactly what hello-world depends on. The
hello world program can be statically compiled so that it does not depend on any libraries [2].

4



 >> ldd hello-world
 linux-vdso.so.1 (0x00007ffc51db1000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fcff8553000)
 /lib64/ld-linux-x86-64.so.2 (0x00007fcff8759000)
 >> gcc -o hello-world hello-world.c -static
 >> ldd hello-world
 not a dynamic executable
 >> docker build --tag hello .
 >> docker run hello

 Hello World

Now we have a Docker image built from scratch, without an operating system, which can say ‘Hello
World’!

If you are interested in exploring in more depth, try using the ‘docker image inspect hello’
and ‘docker history hello’ commands.

References
[1] C. Xu, “Docker: From scratch.” https://codeburst.io/docker-from-scratch-2a84552470c8, July

2020.

[2] henszey, “Smallest x86 ELF hello world.” http://timelessname.com/elfbin/.

5

https://codeburst.io/docker-from-scratch-2a84552470c8
http://timelessname.com/elfbin/

	Containers
	Introduction
	History and Fundamentals
	Namespaces
	Layered Filesystem
	Summary

	Docker FROM scratch


