
Lecture Notes in Software Engineering

Distributed Systems II
March 25, 2024

Brae Webb & Richard Thomas

Presented for the Software Architecture courseat the University of Queensland



Last Updated on 2024/04/21

Distributed Systems II Software Architecture
March 25, 2024 Brae Webb & Richard Thomas

1 Introduction
In the previous course notes [1] and lecture [2] on distributed systems, we explored how to leverage dis-tributed systems to increase the reliability and scalability of a system. Specifically, we saw that when work-ing with stateless services, which do not require persistent data, auto-scaling groups and load-balancerscan be used to scale-out the service — distributing the load to arbitrary copies of the service. In the lecture,we applied this technique to the product browsing service of our Sahara example, as illustrated in Figure 1.

Figure 1: A service-based implementation of Sahara with stateless scaling techniques applied to the prod-uct browsing service.
1



One might correctly identify that by scaling the product browsing service, we have only increased themaximum load that the database can expect. The database becomes a major bottle-neck. We mightattempt to scale-up the database, purchasing more powerful machines to host the database on, but thisapproach is limited.In this part of our distributed systems series, we look at how to scale stateful services which do requirepersistent data. We focus on state stored in a database and thus, how databases can be made more reliableand scalable. In these lecture notes we only outline the scope of our treatment of database scaling. For adetailed treatment of these topics, please refer to the Designing Data-Intensive Applications textbook [3].
2 Replication
Replication is the most straight-forward approach to scaling databases. In many applications, read oper-ations occur much more frequently than write operations, in such cases replication can enable improvedcapacity for read operations whilst keeping the write capacity roughly equivalent. Replication involvescreating complete database copies, called replicas, that reduce the load on any single replica.
2.1 Leader and Followers
The most common implementation of replication is leader-follower replication. Fortunately, it is also thesimplest.
Leader a replica that accepts write operations and defines the order in which writes are applied.
Follower replicas that are read-only copies of the data.
When writes occur, they must be sent to the leader replica. Leader replicas propagate updates to all fol-lowers. Read operations may occur on any of the follower replicas.For our example, we might create two followers, or read replicas, of the Sahara database. As the productbrowsing service is likely to primarily perform read queries, it may send those requests to one of the readreplicas. Write operations, which are likely to be the majority for the product purchasing service, must stillbe sent to the lead replica1. The resulting system might look like Figure 2.

1Realistically, queries would be forwarded based on their type rather than their service of origin.

2



Figure 2: A leader-follower replication of the Sahara database.
Replication Lag

For leader-follower replication to be practical, write updates from the leader to the followers need to be
asynchronous2. However, asynchronous propagation introduces an entirely new suite of issues. If we donot wait for write updates to be propagated to all replicas, then there will be times where the data retrievedfrom a read replica will be out-dated, or stale. Eventually, all writes will be propagated to every read replica,so we call this an eventually consistent system.We have grown fairly accustomed to eventually consistent systems. Consider the last time you or afriend of yours updated their display picture. Did everyone start seeing the updated picture immediately,or, did it take a number of hours or even days to propagate through? Despite our increased exposure toeventually consistent systems, there are a few common practices to keep in mind when implementingsuch a system to preserve your users sanity.
Read-your-writes Consistency Ensures that the user who wrote the database change will always see theirupdate reflected, though other users will still have to wait for the change to be propagated. This typeof consistency avoids upsetting users and making them think they must redo their write.
Monotonic Reads Ensures that once a user reads the updated data, they do not later see the older versionof the data, i.e. they do not travel back in time.
Consistent Prefix Reads Ensures that sequential writes are always read in the same order. Consider a Twit-ter feed, each post is a write. Consistent Prefix Reads guarantees that those readers do not see theposts out of order.
2.2 Multi-leader Replication
Leader-follower replications are sufficient for most use cases as reads often occur far more frequently thanwrites. However, there are situations where leader-follower replication is insufficient. For systems which

2We need not wait for writes to propagate to all followers before accepting that a write has succeeded
3



need to be highly available, having a single point of failure, the leader replica, is not good enough. Likewise,for systems which need to be highly scalable, a write bottle-neck is inappropriate. For these situations,a multi-leader replication scheme may be appropriate. It is worth noting that multi-leader replicationsintroduce complexity that often outweighs their value.

Figure 3: A multi-Leader replication of the Sahara database.
For our example, we might naively introduce a system such as Figure 3. Here we have introduced asecond leader, and each leader has their own follower. This type of separation might make sense. Wemight find it beneficial to have a separate database replica in the warehouse which can be interacted withvia the fulfillment service. Such a system would isolate the warehouse operations team from the potentiallatency of the external customer load.However, we now have a system where writes can occur in parallel. This can cause several problems.Consider a situation where the fulfillment center has noticed a defective Nicholas Cage Reversible Pillow.They promptly update their system to reflect the decreased stock. However, at around the same time,the CSSE6400 tutors placed a bulk order for all of Sahara’s remaining stock. Both write operations appearsuccessful to the fulfillment team and the tutors but a conflict has occurred — this is known as a write

conflict, and it is a common problem in multi-leader replications.
Write Conflicts

Write conflicts occur when two or more leaders in a multi-leader replication update the same piece ofdata. In relational systems this is normally the same table row. There are a few mechanisms for resolvingwrite conflicts, but the recommended approach is to avoid conflicts altogether. Conflicts can be avoidedby ensuring that a piece of data is only ever updated by the same leader, for example, we might implementthat all Nicholas Cage related products are written to Leader Replica 1.

4

https://www.amazon.com.au/dp/B09LYDDDR1


If we are not fortunate enough to be in a situation where conflicts can be avoided, there are a fewtechniques we can use.
• Assign IDs to writes, and decide which conflicting write to accept based on the ID via some strategy(i.e. highest ID). This results in lost data.
• Assign an explicit priority to leader replicas. For example, if there is a merge we might accept LeaderReplica 1 as the source of truth. This also results in lost data.
• Merge the values together via some strategy. This works for data such as text documents but isinappropriate for stocks of products.
• Application code resolution. As most conflict resolution is application dependent, many databasesallow users to write code which can be executed on write of a conflict or read of a conflict to resolvethe conflict, where appropriate our application could even ask the user to resolve the conflict.

2.3 Leaderless Replication
Leaderless replication does not rely on writes being sent to and processed by a single designated leader,instead reads and writes may be sent to any of the database replicas. To accomplish this, leaderlessdatabases introduce a few additional constraints on both read and writes operations to maintain relativeconsistency.A core aspect of leaderless replication is that clients need to duplicate both write and read operationsto multiple replicas. This may be implemented by each client communicating directly with the databasereplicas, as in Figure 4, or one of the replica nodes can act as a coordinator node and forward requests toother database replicas, as in Figure 5.

Figure 4: A leaderless replication of the Sahara database.
In leaderless databases, any database node may go offline at any point and the system should continueto function, assuming only a few nodes go offline. This type of database gives us excellent reliability andscalability as we can keep adding extra replicas to increase our capacity. But how can we support this?

Quorum

To support the extensibility of leaderless databases, we need to duplicate our read and write requests. Asa simple example, take Figure 4, we have three replicas of our database. When making a write request, ifwe send our write to just one replica then at most two replicas can have outdated data. Therefore whenwe read, we need to read from all three replicas to ensure one will have the most recent writes. If instead,we write to two replicas then at most one replica will have outdated data. Then we need only read fromtwo replicas to ensure that at least one will have the most recent writes.
5



Figure 5: A leaderless replication using a coordinator node of the Sahara database.
To generalise, if we have a leaderless database of n replicas, we need to satisfy that,

w + r > n

where w is the amount of replicas to write to and r is the amount of replicas to read from. By satisfyingthis equation we have quorum consistency, the set of writes and reads must overlap, which means thatreading stale data is unlikely3.
3 Partitioning
Partitioning involves distributing the contents of a database across multiple nodes. It differs from replica-tion as nodes do not store complete copies of the database. Often partitioning is combined with replica-tion to prevent the lost of data if one of the partitions fails. Partitioning is required when we have a largeamount of data to store.When we start partitioning data onto multiple nodes, we need to consider how we decide which databelongs to which node. There are two primary approaches to this decision.
Partition by Key Range
We assume that data is given a key, with a key-value database this is required, in relational databases theschema should specify a primary key column. One approach to partitioning is to divide the range of keyvalues and partition based on that. Consider the UQ student database, the key would be the student ID.We can then partition the database based on student ID, say all student numbers between s0000000 and
s1000000 are stored on partition 0, all numbers between s1000001 and s2000000 are stored on partition1, etc.This approach appears practical, each partition has an equal share of database entries. However, astime goes on certain partitions become less used while others become very popular. We might imaginethat at the moment, partitions 5 and 6 would be used far more frequently than partition 0. This is knownas skewed partitioning.

3The cases where stale data can still be read are enumerated in M. Kleppmann [3].
6



Partition by Hash
Consider hash maps, we use hashes of the keys to allocate values into buckets. A good hashing algorithmminimizes the amount of collision (a value stored in the same bucket). We can apply the same process todatabase partitioning, hashing the key of a record allows us to maximize the spread of partition usage. Thedisadvantage of partitioning by hash is that only queries by key are efficient, queries by ranges of keys areno longer efficient as they require all partitions to be queried.4
Secondary Indices
Databases often rely on secondary index to perform a range of useful queries. In our UQ student databaseexample, a database field which is often useful to query might be the degree of a student record. Wemight want this query to run efficiently as schools could need to frequently query for these collections toimplement their own services.The two approaches to this are local or global indices. With local indices, each partition stores an indexfor their own partition of the data. With global indices, a partition is assigned to manage a particular sec-ondary index value. For example, partition 2 might store the index for all Bachelor of Software Engineeringstudents.Local indices allow efficient writing, as a write only has to update the index of the partition to which it iswriting. However, it introduces slower reads as all partitions must be queried for their index. Global indicesslow down writing as all relevant partitions need to have their partition updated. Although it can increaseread speeds as a query only needs to look at the relevant partitions.
3.1 Rebalancing
Over time some partitions may get more frequent use than others. We might also add or remove nodes.This can require the data to be rebalanced to update the range of values stored on any partition. Rebal-ancing can be an automated or a manual process. It is important to consider the effects of rebalancingautomatically as they are costly operations and if triggered at an inappropriate time they can greatly im-pact the performance of a database.
3.2 Routing
Much like auto-scaled stateless services, we need a way to route traffic that is fair. However, unlike statelessservices, only one node of the system is capable of processing our request. We need a mechanism forchoosing the appropriate node to which our request is sent.We might implement a naive load balancer which just balances the load regardless of the request. Thisload balancer is will send requests to the wrong nodes. In such a system, it is the responsibility of the nodeto forward the request to the node which is capable of answering the query.A more sophisticated solution would be to deploy a load balancer which is request aware. This loadbalancer can forward requests to the appropriate node.Finally, we might offload the problem to the client. Requiring that our database clients are aware ofhow to map their query to the appropriate node.
4 Transactions
All of the various failure cases and considerations when working with scalable databases can be over-whelming. The complexities of distributed databases make reasoning about the logic of an application

4Databases such as Cassandra use compound primary keys to help resolve this issue.

7



challenging, which in turn leads to more bugs and faults. Fortunately, database developers have a tech-nique to assist in this complexity and allow us to reason about our interactions with the database, transac-
tions.Transactions bundle related groups of read/write operations together and guarantee useful properties.Traditionally, these properties are referred to as ACID properties, Atomicity, Consistency, Isolation, andDurability.
4.1 Atomicity
Atomicity guarantees that when performing multiple operations, if one operation cannot be completedsuccessfully then the effects of all operations are aborted. For example, consider the purchasing process.When purchasing a product we may wish to both update the stock of the product and reduce the funds of acustomer’s account. If either of those operations occurred on their own, someone would be very unhappy.Atomicity guarantees that either all operations in a transaction succeed or none do.
4.2 Consistency
Consistency guarantees that any application specific invariants of the database are preserved by transac-tions. For example, we might introduce the invariant that the stock of an item cannot be below zero. Thisinvariant must then be maintained by all transactions.
4.3 Isolation
Isolation allows transactions to pretend that they are the only operation performing on the data. Trans-actions appear to preform sequentially even though they may in reality be performing concurrently. Thisallows transactions to ignore a whole host of issues related to concurrency.
4.4 Durability
Durability provides a guarantee that once transactions are completed, their updates are preserved. In dis-tributed databases this is often an assurance that the updated data has been copied to other machines.
5 Conclusion
Scaling out services that have persistent data requires far greater care than stateless services. We have seenapproaches for coping with undue load on individual nodes via replication. We have seen approaches forhandling greater volume of data than can be stored on a single machine via partitioning. We have notedthat often one might want to combine the approaches of replication and partitioning for the one databasesystem. Both of these techniques introduce a new range of complexity for programmers to deal with.In our final section we briefly introduced how transactions, and the guarantees they provide, can helpdevelopers in reasoning about their database interactions.This lecture note has been a very brief introduction into the topics of replication, partitioning, and trans-actions. The content has been structured around Chapters 5, 6, and 7 of Designing Data-Intensive Applica-
tions [3]. You are strongly encouraged to read these chapters of the book for a more in-depth coverage ofthese topics.

8



References
[1] B. Webb and R. Thomas, “Distributed systems I,” March 2022. https://csse6400.uqcloud.net/

handouts/distributed1.pdf.
[2] B. Webb and R. Thomas, “Distributed systems I slides,” March 2022. https://csse6400.uqcloud.

net/slides/distributed1.pdf.
[3] M. Kleppmann, Designing Data-Intensive Applications: The big ideas behind reliable, scalable, and main-

tainable systems. O’Reilly Media, Inc., March 2017.

9

https://csse6400.uqcloud.net/handouts/distributed1.pdf
https://csse6400.uqcloud.net/handouts/distributed1.pdf
https://csse6400.uqcloud.net/slides/distributed1.pdf
https://csse6400.uqcloud.net/slides/distributed1.pdf

	Distributed Systems II
	Introduction
	Replication
	Leader and Followers
	Multi-leader Replication
	Leaderless Replication

	Partitioning
	Rebalancing
	Routing

	Transactions
	Atomicity
	Consistency
	Isolation
	Durability

	Conclusion


