
Lecture Notes in Software Engineering

Distributed Computing III
April 29, 2024

Richard Thomas

Presented for the Software Architecture courseat the University of Queensland



Last Updated on 2024/04/30

Distributed Computing III Software Architecture
April 22, 2024 Richard Thomas

1 Introduction
In our introduction to distributed systems we described the fallacies of distributed systems [1]. Some ofthese fallacies (e.g. the network is reliable, the network is secure and the topology never changes) applyMurphy’s Law, if anything can go wrong it will, to the context of distributed systems. We will now move onto O’Toole’s Commentary, Murphy was an optimist.Large distributed systems may consist of hundreds or thousands of computing platforms, communi-cating over large distances and using unreliable internet connections. Failure of some part of the system ispractically guaranteed [2], the system must be designed to cater for partial failure. Even for small systems,some part will eventually fail, so fault handling must be part of the design.
2 Fault Handling
We mentioned that, paradoxically, distributed systems can be more reliable than non-distributed systemsbecause a distributed system spreads risk of failure over multiple machines [1]. This is managed throughhealth checks, load-balancing and auto-scaling. We also described the use of transactions as a mechanismto deal with some potential failures that affect storage of persistent data [3].The challenge, particularly when implementing health checks, is determining when a fault has occurred.Most distributed systems communicate over a TCP/IP network. This introduces a layer of uncertainty intrying to determine if a fault exists. A message sent over a TCP/IP network may not be delivered, may bedelayed, or the response may not be received. Possible causes of these faults include the following.

• The request sent to another service in the system may not have been delivered.
• The request may be delayed and is waiting in a queue to be processed. (e.g. either the network orthe service is overloaded).
• The node running the service may have failed.
• The service may be busy and has temporarily stopped responding.
• The service may have processed the request and replied, but it has not been received.
• The response may be delayed and will be received later.

There are techniques that can be used to identify some faults, but they are not perfect.
• If a compute node is running and reachable, but does not have a process listening on the destinationport, the operating system should close or refuse the TCP connection. This should result in a RST orFIN packet being received by the message sender, with the caveat that the packet may be lost.
• If a process crashes, but the compute node is still running, a monitor program running on the nodecan report the failure to a health monitoring sub-system.

1



• If a router knows that an IP address is not reachable, it can reply with a destination unreachablepacket. But, a router has no additional ways of knowing if an address is not reachable than the restof the system.
• If the system is running on your own hardware, you may be able to query network switches to detectlink failures.

2.1 Retry and Restart
In general, despite the techniques above, the application needs to have a strategy to detect faults and todecide whether to retry a request or that a node is dead. Fault handling has to be responsive in light of theuncertainty of the fault. A general strategy is to retry sending a message a certain number of times andhaving a time limit. If no response is received within the time limit the system will then decide that thenode is dead, will spin up a new node, and remove the dead node from the load balancer’s list of activenodes.The challenge with this strategy is deciding how many retry requests and how long to wait. Multipleretries can swamp an already overloaded node, reducing its performance even more or possibly leading toit crashing. In the first lecture on distributed systems we introduced exponential backoff as a mechanismto reduce the impact of retrying requests [4]. For more information about this strategy, see the retry designpattern [5]. Simple exponential backoff can introduce peaks of load around the exponential delay. Jittercan be added to the delay to spread out these peaks [6].Determining how long to wait before deciding that a node is dead has its own challenges. If the systemdecides that a node is dead, then all clients who have sent messages to that node, and have not received areply, will need to resend their messages to other nodes. Waiting too long reduces the system’s responsive-ness, as processes wait for a the dead node to reply. It may also reduce the system’s overall performanceas a backlog of requests need to be processed.Waiting too short a time may lead to prematurely declaring a node dead. If the node is declared deadbut it is just responding slowly because of system load, then resending messages to other nodes increasesthe load on other nodes. This can lead to a cascading failure, where all nodes are overloaded to the pointthat they are all declared dead. There is an additional problem of declaring a node dead, which is just slowto respond. It will still be processing requests until it is shutdown, but those requests will be resent to othernodes. This leads to the possibility that some actions will be performed twice.One option to reduce the variability of message delays is to use UDP rather than TCP at the networklevel. UDP does not retransmit lost packets, which helps reduces the variability of transmission time. Thedrawback is that the system will need to manage more messages not being received, as it will not havethe automated retransmission of packets provided by TCP. It depends on the type of system, which ap-proach is more beneficial. If the system is transmitting financial data, the greater reliability of TCP probablyoutweighs the reduced message delay of UDP. Whereas a music streaming service will probably find thathaving less variability of delay is more beneficial than the reliability of TCP. (Receiving an audio packet,after it needed to be played, is pointless.)
2.1.1 Idempotency

Retrying operations introduces a potential complication. What happens if the receiving node received themessage and processed it, but the response failed to be returned to the sender. The sender can retry theoperation, but that may have an adverse effect on the receiver if it repeats the behaviour.One option is for each message to have an identifier. The receiver can decide that it has already pro-cessed the message and just return the result without processing it again. Or, if the operation will not haveany adverse effect (e.g. it is a query with no side effects), it can be processed again.

2



The intent is that the server’s state will be the same, regardless of whether it receives a message onceor multiple times. This behaviour is called the idempotent consumer pattern1.
2.2 Timing Faults
We introduced the issue of write conflicts, when discussing multi-leader replication [3]. The issue of de-termining order of events is applicable to more than just writing to a database. Any situation where eventorder is important across multiple services (e.g. message queues in an event driven architecture), will havesimilar issues to overcome.One intuitive strategy for dealing with some cases of determining event order, is to use a timestampto record when the event was created. For write conflicts, the idea being that the most recent write is thecorrect value in the case of a write conflict. There are two problems with this strategy. It is likely that theclocks on the different machines will not be perfectly in sync. It is possible that the machine on which thelast write was performed has a clock that is behind the machine with the previous write. If writes occur inclose succession, it is probable that some writes will have timestamps indicating the wrong order of writes.Trying to synchronise clocks on different computers is difficult. Synchronising using Network TimeProtocol (NTP) is not reliable. Network transmission time means that two machines that access one NTPserver at the same time are likely to get the time result after different lengths of network delays. Theclocks on the two machines are also likely to lose or gain time at different rates after their times have beensynchronised. There is a Precision Time Protocol (PTP) that can be used for synchronisation of under amicrosecond [7], but it takes significant resources to implement.Another problem is that computer clocks have finite precision. Two events can occur in close enoughsuccession, even on the same machine, that they will end up having the same timestamp.There are a few strategies that can be applied to deal with determining the order of events, which donot rely on timestamps. Leslie Lamport, who was referred to in the service-based architecture lecture [8],suggested a strategy of using a logical clock to overcome issues of drift between real clocks on differentcomputers [9]. The key idea is that every message sent to a service includes the logical time at which itwas sent. The receiver then adjusts its logical time to be later than when the message was sent. Designing
Data Intensive Applications describes these problems in great detail and suggests some solution options,with their attendant tradeoffs [10].
2.3 Byzantine Faults
Byzantine2 faults are those that are caused by nodes that “lie”. Most distributed systems are implementedwith the assumption that nodes are “honest”. An honest node is one that provides responses which thesystem can assume are correct. Faults relate to the node not responding. A lying node is one whoseresponse may not be correct. Three common scenarios of lying nodes are:

• Sending confirmation of receipt of a message but failing to process or losing the message.
• Processing a message request but failing to send a response.
• Sending contradictory results to different nodes.

Byzantine Generals Problem

The Byzantine Generals Problem [11] is a fictional scenario where several generals need to agree on a battleplan. Their armies are situated in different positions, so they can only communicate by sending messen-gers. These messengers can get delayed or lost (like packets in a network).
1https://microservices.io/post/microservices/patterns/2020/10/16/idempotent-consumer.html2Byzantine carries a connotation of being an excessively complicated, intrigue filled and corrupt environment. This is prob-ably a smear of the Byzantine Empire (https://www.britannica.com/place/Byzantine-Empire).

3

https://microservices.io/post/microservices/patterns/2020/10/16/idempotent-consumer.html
https://microservices.io/post/microservices/patterns/2020/10/16/idempotent-consumer.html
https://www.britannica.com/place/Byzantine-Empire


To complicate their decision making process, some of the generals may be traitors, though most gen-erals are loyal. Loyal generals will only send honest messages. Traitors may send dishonest messages orsend messages disguised as coming from another general.The problem was proposed by Leslie Lamport as an analogy of some of the extreme faults that mayexist in a distributed system. A Byzantine fault-tolerant system is one that continues to work correctly,even if some nodes are sending incorrect messages. This may be due to errors in the node itself or in thenetwork connection. Data may be corrupted in storage or in transit, it may also be intercepted or spoofedby malicious attackers.Most systems do not attempt to be Byzantine fault-tolerant, as the cost is often too high for the po-tential hazard. Stakeholders need to decide if the cost is warranted for a particular system. Flight controlsystems need to be Byazntine fault-tolerant. There are enough airplanes in the air at any one time thatcosmic ray bit flipping3 is guaranteed to happen. The control systems need to deal with potentially criticalsensor data being corrupted. Blockchain protocols are designed to allow mutually distrusting parties toagree on the result of a transaction. A blockchain network needs to assume that a hacker could breach thenetwork.Not catering for Byzantine faults does not mean that a system design should assume that all messagesare correct. Simple error detection (e.g. checksums) should be used to catch corrupted data. Any userinput should be sanitised before it is used as data in the system. These strategies do not handle subtlerdata corruption or persistent malicious attack, but they catch simple errors that should not propagate intothe rest of the system.
3 Consistency
Consistency is the simple idea that different parts of a system agree on the same value for a data ele-ment. Implementing consistency is much more complex than the idea, due to many of the faults that aredescribed in section 2.
3.1 Eventual Consistency
Eventual consistency is aweak guarantee. What it guarantees is that all replicated versions of the databasewill eventually have consistent values for all data they store. The issue is the time it takes to synchronisedata. It provides no guarantee of how long until reading a specific value from all replicated databases willreturn the same value. A read that occurs after a write, but which reads from a replica that has not beenupdated, will retrieve the old (stale) value.Figure 1 demonstrates the synchronisation issue with an example of searching for a “Nick Cage re-versable pillow” from the Sahara on-line store. The product database is replicated to two followers. Searchesstarted after the product has been added to the store may still return that it is not available, until all replicashave been updated.This leads to the potential for subtle errors in the system logic. It is difficult to think about the conse-quences of retrieving stale data, as most programmers’ intuition is based on the experience of modifying avalue and always retrieving the new value. The system design needs to take into account that all databasereads are performed under the assumption that the value may be stale. Testing for errors caused by datanot being consistent is difficult, as you have to force data inconsistencies.

3https://www.scienceabc.com/innovation/what-are-bit-flips-and-how-are-spacecraft-protected-from-them.
html

4

https://www.scienceabc.com/innovation/what-are-bit-flips-and-how-are-spacecraft-protected-from-them.html
https://www.scienceabc.com/innovation/what-are-bit-flips-and-how-are-spacecraft-protected-from-them.html
https://www.scienceabc.com/innovation/what-are-bit-flips-and-how-are-spacecraft-protected-from-them.html


Figure 1: Eventual consistency issues.
3.2 Linearisability
Contrary to eventual consistency, linearisability is a strong guarantee. A database system that implementslinearisability provides an abstraction layer that allows clients who use the database to work as if there isonly a single instance of the database, regardless of how many replicas have been deployed. This providesa simple interaction model that corresponds to expectations from non-distributed systems.Linearisability means that once a client has written data to the database, all clients who read the thatdata will see the same value, regardless of the replica from which they read the data. The challenge isimplementing linearisability.
3.2.1 Application

Situations where linearisability can be useful include when uniqueness needs to be guaranteed. For ex-ample, when a customer registers as a member of the Sahara eCommerce system, they need a uniqueidentifier. If two people attempt to register at the same time and select the same user id, the systemneeds to be able to linearise the requests to return an error message to one of the users. The same issuearises in banking applications. If a user transfers money from their account at the same time as an auto-mated payment occurs, the account debit service may need to guarantee that the account balance doesnot become negative. It needs to be able to linearise these two operations and disallow one, if it wouldresult in a negative balance.In some situations, it is acceptable to not require linearisability of operations. If two customers orderthe last item of a product in the Sahara eCommerce system, the stakeholders and designers may decidethat they will allow both orders to proceed. The resolution may be that when the fulfillment service orthe warehouse discover that the product is out of stock, they generate an event that changes one of thecustomers’ orders to become a backorder.The simplistic implementation of linearisability is to have a single database. This defeats the purposeof replicating a database to improve performance and reliability.

5



3.2.2 Single-Leader Replication

Single-leader replication can be implemented in such a way as to provide linearisability. This is imple-mented by only allowing reads to be from the leader or from followers that are synchronously updated bythe leader. This means that the replicated databases can guarantee that all reads after a write will returnthe current value.Forcing all reads to be from the leader defeats one of the purposes of replicating a database, which isthe performance benefit of performing queries on followers and only using the leader for update opera-tions. Synchronous updates of at least some followers defeats the performance benefit of asynchronouscommunication, but at least allows queries on followers. Either of these approaches maintain the reliabilityadvantage of replicating the database.An additional complication to implementing linearisable single-leader replication is determining whichreplica is the leader. A typical approach is to have a lock of some form that is acquired by the leader, andall other replicas are followers. Acquiring the lock itself must be a linearisable operation. If more than onereplica believes it is the leader, it means that write behaviour cannot be linearisable. A coordination service,such as etcd4, can be used to implement distributed locks in a linearisable fashion.
3.2.3 Multi-Leader Replication

Multi-leader replication cannot provide linearisability, without introducing so many constraints as to elim-inate any benefit of using the approach in the first place. This is because multi-leader replication allowsconcurrent writes to multiple leaders, and the data is asynchronously replicated to the followers and otherleaders.
3.2.4 Leaderless Replication

It is difficult to provide linearisability with leaderless replication. Quorum reads [3] do not guarantee lin-earisability. With asynchronous communication and network delays it is possible for a write to start, butfor a concurrent read to obtain stale data from all members of the quorum that were queried. This occurswhen a read retrieves a value from a database that has not yet been written to, but after the write operationstarted and other databases were updated. The read obtains a consistently stale value, despite obtainingthe data from a quorum of databases.It is possible to provide linearisability using strict quorums with leaderless replication. This comes atthe cost of performance, just as it does with single-leader replication. Writes must read the state of aquorum of databases and obtain a lock on the value before performing the write. This allows the write tobe performed synchronously.In leaderless replication, only basic read and write operations are linearisable. More sophisticated atomicoperations or transactions require a consensus algorithm to be used to provide linearisability.
3.2.5 Consensus Algorithms

Consensus algorithms, which will be described in section 4, have some similarity to single-leader repli-cation. Their internal implementations prevent stale replica data or having multiple leader nodes. Thepreviously mentioned coordination service, etcd, implements its own consensus algorithm, that providesa key-value store that guarantees linearisability.
3.2.6 Consequences

Linearisability means that if some database replicas lose network connection to the rest of the system,they cannot process any requests. Writes cannot be made as they cannot be linearised. Reads connot be
4https://etcd.io/

6

https://etcd.io/
https://etcd.io/


made as they may obtain stale data.Consequently, systems, or parts of systems, that require linearisability demonstrate lower availabilitydue to potential network faults. This observation is known as the CAP theorem [12]. Distributed systemscan have consistency in the presence of network partitioning. Or, they can have availability in the pres-ence of network partitioning. The ideas have been around since the mid 1970’s [13], despite the muchmore recent reference to the CAP theorem. The prime value of the CAP theorem is how it influenced thedevelopment of NoSQL databases.
3.3 Causal Ordering
Linearisability is one approach to defining the order in which read and write operations are conceptuallyperformed. It defines a total order5 on the operations. This means that operations can be compared toeach other to determine which should be considered to have occurred first. Or, from the perspective ofthe linearisability abstraction, there are no concurrent operations on the database.Another approach to defining the order of operations is to define a partial order based on causality.That is the ordering is based on one operation occurring before another (i.e. they are causally related), butother operations may be concurrent. A Git repository’s history demonstrates causal dependencies. Withina single branch commits occur in sequential order. But, with multiple branches, development on eachbranch progresses in parallel with the others and commits may occur concurrently on different branches.Causal ordering is not as strict as linearisability, which in turn results in less performance cost to im-plement causal ordering. The issue is to capture causal dependencies. This requires a mechanism to de-termine which operation happened before another one. The consequence is that the operations must beperformed in the same order on all replicas. If causal ordering is not required for some operations, theymay occur concurrently and it does not matter if they execute in a different order on a replica.A single-leader replicated database can record an increasing sequence number with every write oper-ation it records in its log. Followers can then read the log to execute writes in sequence number order. Allfollowers will then be causally consistent with the leader. The drawback is that a single-leader cannot bescaled if asynchronous writes occur faster than it can process them. There is also the difficulty of handlingthe situation where the leader fails and selecting a new leader.
3.3.1 Lamport Timestamps

If the system does not have a single-leader, the logical clock approach mentioned in section 2.2 providesa mechanism to define causal ordering. This approach is called Lamport timestamps [9]. Each node has anid and counts the number of operations it has executed. The timestamp is a tuple (counterValue, nodeID).The nodeID guarantees that every timestamp is unique, even if they have the same counter value. Everynode stores the maximum counter value it has seen so far. This maximum is passed in every request toanother node. If a node receives a request or response with a maximum counter value greater than its owncounter value, it increases its own counter to the new maximum.In figure 2, when InventoryUpdater sends message 4 to ProductDB2, the message includes a pa-rameter which is InventoryUpdater’s current maximum value, which is 1. ProductDB2’s counter value isalready 2, so it increases it to 3 and returns it as part of the Lamport timestamp to InventoryUpdater.
InventoryUpdater records 3 as its new maximum value. When InventoryUpdater sends message 5to ProductDB1, the message includes InventoryUpdater’s maximum value of 3. ProductDB1’s countervalue was 1, so it increases it to 4 and returns it to InventoryUpdater.Lamport timestamps define causal ordering for operations, but they do not guarantee consistencywhen an operation is performed. If two orders are sent to ProductDB1 and ProductDB2 at the same timeand there is only one item in stock, Lamport timestamps provide a way to decide which order occurredfirst, but only after the orders are processed.

5https://mathworld.wolfram.com/TotallyOrderedSet.html

7

https://mathworld.wolfram.com/TotallyOrderedSet.html
https://mathworld.wolfram.com/TotallyOrderedSet.html


Figure 2: Lamport timestamps.
To enforce a constraint that would not allow two orders for the last item in stock, there needs to bea mechanism to indicate when the order is completed. Total order broadcast is one technique that doesthis. Messages are ordered by their delivery time, not when a result is returned. So, if a message hasbeen received, another message cannot be performed before it. Coordination services, such as etcd6,implement total order broadcast.

4 Consensus
In a distributed system, consensus is when a set of nodes in the system agree on some aspect of thesystem’s state. Achieving consensus is a difficult problem, in light of the issues described in section 2.When designing a distributed system, you can take advantage of the abstraction of consensus to ignorethe faults it handles. Abstractions like consensus and transactions [3] make it easier to reason about thebehaviour of a distributed system. In this section, we will look at how consensus can be implemented.
4.1 Consensus Algorithms
Consensus is formally described as “one or more nodes may propose values, and the consensus algorithm
decides on one of those values.” For example, if multiple customers attempt to buy the last item that isin stock, each node handling a customer request proposes its customer as the purchaser. The consen-sus algorithm decides which customer becomes the purchaser. A consensus algorithm must satisfy thefollowing properties [14].
Uniform Agreement All nodes must agree on the decision.
Integrity Nodes can only vote once.
Validity If the decision is the value v, then v must have been proposed by a node.
Termination Every node that does not crash must decide on a value.

6https://etcd.io/

8

https://etcd.io/
https://etcd.io/


Uniform agreement and integrity are the keys to consensus. All participants must agree on the samedecision, and once a participant agrees they cannot change their decision. Validity is a formal require-ment to avoid nonsensical solutions (e.g. always agreeing to a null decision). Termination enforces faulttolerance. It requires that the consensus algorithm progresses towards a solution, and does not wait forpermanently failed nodes. It essentially is saying that if some nodes fail, the other nodes must make adecision and reach consensus with those nodes that are still working. Any consensus algorithm requires atleast a majority of the nodes trying to achieve consensus to remain functioning in order to assure termi-nation [15]. Most implementations of consensus algorithms ensure that uniform agreement, integrity andvalidity are always met, even if a majority of the nodes fail. This means that even in the worst case it willnot result in the consensus algorithm making an invalid decision, it just means that it will not be able toachieve consensus and will not be able to process requests.Some commonly used consensus algorithms are Viewstamped Replication (VSR) [16], Paxos [17], Raft[18], and Zab [19]. You are not expected to be able to implement a consensus algorithm, as it is verychallenging to implement correctly. You should be aware that consensus algorithms exist and then find alibrary or service that implements one that suits your scenario. For performance reasons, most consensusalgorithms do not directly implement the formal model described above. They typically implement totalorder broadcast, as mentioned in section 3.3. It requires that messages are delivered exactly once, and inthe same order, to all nodes. This provides a result equivalent to multiple rounds of consensus determiningthe order in which messages are sent.Most consensus algorithms assume that there are no Byzantine faults, as described in section 2.3 (e.g.a node sending contradictory messages to other nodes). It is possible to implement a consensus algorithmthat can manage Byzantine faults, as long as fewer than one-third of the nodes generate Byzantine faults[20]. The details of how to do this are beyond the scope of this course.
4.2 Distributed Transactions
A distributed system that needs to enforce a transaction across multiple compute nodes needs a mech-anism to gain consensus between all nodes participating in the transaction, so that it can be committed.This is called the atomic commit problem, based on the idea of transaction atomicity from ACID [3].In a database, a distributed transaction may happen when the database is partitioned and data in dif-ferent partitions are part of the transaction. It will also happen if the database has a secondary index on adifferent node to the primary index. Distributed transactions may also occur where events or messages arepart of the transaction. An example of this is sending a message to a message queue, while storing data ina database. In the Sahara eCommerce system, when an order is placed it is stored in the order table in thedatabase and a message is placed in the notification queue to notify the customer that the order has beensuccessful. Storing the order may be a transaction in only a single database partition, but to ensure thenotification message is only added to the queue if the order is successful requires a distributed transaction.
4.2.1 Two-Phase Commit

A two-phase commit algorithm is a type of consensus algorithm that solves the atomic commit problem.As the name implies, it splits the commit into two steps. There are better consensus algorithms, as de-scribed in section 4, but two-phase commit is fairly simple and still commonly used. It should be notedthat a two-phase commit is a consensus algorithm but it does not satisfy the termination property, so it isnot fault tolerant.A transactionmanager is introduced to coordinate the two-phase commit process. The database nodesthat are part of the transaction are called participants.The process starts when some part of the system (Client in figure 3) requests to start a distributedtransaction and receives a unique transaction identifier (transId). The client starts single-node transactionson each, attaching the transId to the transaction. The client can perform multiple reads and writes as partof the transaction.
9



Figure 3: Two-phase commit.
When the client is ready to commit the transaction it requests theTransactionManager to perform thecommit. The TransactionManager sends a prepare message to all the participants. If a prepare messagetimes out, or any participant reports a failure, the TransactionManager sends an abort message to allparticipants and reports the failure to the client.When a participant receives the prepare message, it confirms that it can commit the transaction, re-gardless of any fault that may occur after replying to the prepare message. (i.e. The participant has savedall changes as part of this transaction in persistent memory.) The participant is no longer able to abort thetransaction itself, it can only abort it now if it receives an abort message from the TransactionManager.In effect, it is a pseudo-commit.When the TransactionManager receives positive responses from all participants, it saves the commitdecision to a persistent transaction log. This means that even if the TransactionManager fails, it canrecover the decision. This is called the commit point. If the TransactionManager decides to abort thetransaction, it records the abort decision in the transaction log.After the commit point has been reached, the TransactionManager sends the commit message to allparticipants. This is an irreversible decision. If the commit message fails or times out, theTransactionManagermust continue retrying the message until all participants report that they have committed the transaction.This means that even if a participant crashes before it performs the commit, it will complete the commitonce the participant restarts. That was the reason for performing a pseudo-commit at the prepare stage, ifnecessary, the participant can recover and redo all steps that are part of the transaction leading up to thecommit.If the TransactionManager fails during the commit process, it can recover and resend the commitmessages to any participant that had not responded before the TransactionManager failed. If a partici-pant had commited the transaction before the TransactionManager failed, it can ignore the new commitand just report that the commit was successful.Many libraries implement two-phase commit. The Open Group defined the X/Open eXtended Ar-

10



chitecture standard [21], which most of these libraries follow. Many relational databases (e.g. MySQL,Postgres, Oracle, . . . ) and message queues (e.g. ActiveMQ, IBM MQ, . . . ) implement the standard.A two-phase commit is called a blocking atomic commit, as completion of the commit can take a longtime if a participant or theTransactionManager fail. Even worse, if the transaction log on theTransaction-
Manager or a participant are corrupted when they fail, this may lead to rows in the database never beingunlocked. This usually requires manual intervention to decide whether to complete the commit or rollit back, to maintain atomicity. Some libraries that support two-phase commit can make an automateddecision in this case, but the decision will probably break atomicity.Two-phase commit provides a simple abstraction that allows distributed systems to perform safe trans-actions. The drawback is that a blocking atomic commit is a significant performance cost. Even if the
TransactionManager, and no participant, fails; rows across multiple database nodes are locked until thecommit completes. If there is a failure, recovery can take a long time. For example, in MySQL it is reportedthat distributed transactions are ten times slower than single-node transactions [22]. Consequently, mostNoSQL databases and many cloud-based relational databases do not support distributed transactions.
4.3 Leaders
Section 3.2.2 mentions issues around choosing the leader for a single-leader replicated database. Somedatabase systems allow the leader to be automatically elected. This allows single-leader replication tobe fault tolerant as a new leader can be elected if the leader fails. This concept generalises to consensusalgorithms, which need a leader to achieve consensus.

Epoch numbers are used to manage this approach. The systems guarantee that there is only one leaderper epoch, rather than there only ever being one leader. If there is no leader, or the current leader seemsto be dead, a vote is conducted amongst the nodes trying to achieve consensus to elect a new leader. Theelection increments the epoch number. Each leader has its epoch number. If there is a conflict betweenleaders (e.g. a vote was conducted for a new leader when the previous leader was not dead), the leaderwith the higher epoch number wins as the new leader.Before a leader can decide on a value that has been proposed for consensus, it checks to see if there areany other leaders with a higher epoch number. It must obtain the results from this check from a quorumof nodes, otherwise the check fails.
5 Conclusion
Designing reliable distributed systems is a complex, but manageable, process. These notes have intro-duced some of the less intuitive issues that arise in distributed systems and how to design a system towork in the presence of these issues.It is possible to go a step further and prove the correctness of distributed systems. This involves creatinga model of the system and every service in the system. Assumptions about system behaviour can bestated within the model. The algorithms used to implement the system can be proven to work within thesystem model and its assumptions. Of course, if the assumptions are broken, then any proofs are invalid.CSSE7610 Concurrency: Theory and Practice7 provides the background knowledge required to performthese proofs and introduces some of the initial modelling techniques required for distributed systems.
References

[1] B. Webb and R. Thomas, “Distributed systems I,” March 2022. https://csse6400.uqcloud.net/
handouts/distributed1.pdf.

7https://my.uq.edu.au/programs-courses/course.html?course_code=csse7610

11

https://my.uq.edu.au/programs-courses/course.html?course_code=csse7610
https://csse6400.uqcloud.net/handouts/distributed1.pdf
https://csse6400.uqcloud.net/handouts/distributed1.pdf
https://my.uq.edu.au/programs-courses/course.html?course_code=csse7610


[2] L. A. Barroso, U. Hölzle, and P. Ranganathan, TheDatacenter asaComputer: DesigningWarehouse-Scale
Machines. Morgan & Claypool, 3rd ed., October 2018.

[3] B. Webb and R. Thomas, “Distributed systems II,” March 2024. https://csse6400.uqcloud.net/
handouts/distributed2.pdf.

[4] B. Webb and R. Thomas, “Distributed systems I slides,” March 2022. https://csse6400.uqcloud.
net/slides/distributed1.pdf.

[5] R. R. Singh, “Understanding retry pattern with exponential back-off and circuit breaker pattern.”
https://dzone.com/articles/understanding-retry-pattern-with-exponential-back, Oc-tober 2016.

[6] M. Brooker, “Exponential backoff and jitter.” https://aws.amazon.com/blogs/architecture/
exponential-backoff-and-jitter/, March 2015.

[7] D. Arnold, IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and
Control Systems. IEEE Standard Association, 2019 ed., June 2020.

[8] R. Thomas, “Service-based architecture slides,” March 2022. https://csse6400.uqcloud.net/
slides/service-based.pdf.

[9] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communications of the
ACM, vol. 21, no. 7, pp. 558–565, 1978.

[10] M. Kleppmann, Designing Data-Intensive Applications: The big ideas behind reliable, scalable, andmain-
tainable systems. O’Reilly Media, Inc., March 2017.

[11] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM Trans. Program. Lang.
Syst., vol. 4, p. 382–401, July 1982.

[12] E. Brewer, “Cap twelve years later: How the "rules" have changed,” Computer, vol. 45, no. 2, pp. 23–29,2012.
[13] P. R. Johnson and R. H. Thomas, “Rfc 677: The maintenance of duplicate databases.” https://www.

ietf.org/rfc/rfc677.html, January 1975.
[14] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable and Secure Distributed Programming.Springer, 2nd ed., 2011.
[15] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems,” J. ACM,vol. 43, p. 225–267, mar 1996.
[16] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new primary copy method to support highly-available distributed systems,” in Proceedings of the Seventh Annual ACM Symposium on Principles of

DistributedComputing, PODC ’88, (New York, NY, USA), p. 8–17, Association for Computing Machinery,1988.
[17] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst., vol. 16, p. 133–169, May 1998.
[18] H. Howard, M. Schwarzkopf, A. Madhavapeddy, and J. Crowcroft, “Raft refloated: Do we have con-sensus?,” SIGOPS Oper. Syst. Rev., vol. 49, p. 12–21, Jan 2015.
[19] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance broadcast for primary-backupsystems,” in 2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN),pp. 245–256, IEEE, June 2011.

12

https://csse6400.uqcloud.net/handouts/distributed2.pdf
https://csse6400.uqcloud.net/handouts/distributed2.pdf
https://csse6400.uqcloud.net/slides/distributed1.pdf
https://csse6400.uqcloud.net/slides/distributed1.pdf
https://dzone.com/articles/understanding-retry-pattern-with-exponential-back
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://csse6400.uqcloud.net/slides/service-based.pdf
https://csse6400.uqcloud.net/slides/service-based.pdf
https://www.ietf.org/rfc/rfc677.html
https://www.ietf.org/rfc/rfc677.html


[20] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,” ACMTrans. Com-
put. Syst., vol. 20, p. 398–461, nov 2002.

[21] X. Company, Distributed Transaction Processing: The XA Specification. The Open Group, September1991. https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf.
[22] R. Wigginton, R. Lowe, M. Albe, and F. Ipar, “Distributed transactions: A primer with mysql,” in MySQL

Conference and Expo, (Santa Clara, CA), April 2013.

13

https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

	Distributed Computing III
	Introduction
	Fault Handling
	Retry and Restart
	Idempotency

	Timing Faults
	Byzantine Faults

	Consistency
	Eventual Consistency
	Linearisability
	Application
	Single-Leader Replication
	Multi-Leader Replication
	Leaderless Replication
	Consensus Algorithms
	Consequences

	Causal Ordering
	Lamport Timestamps


	Consensus
	Consensus Algorithms
	Distributed Transactions
	Two-Phase Commit

	Leaders

	Conclusion


