Lecture Notes in Software Engineering

Infrastructure as Code
March 11, 2024

Brae Webb

Presented for the Software Architecture course
at the University of Queensland

THE UNIVERSITY
OF QUEENSLAND

AUSTRALIA

Last Updated on 2023/02/17

Infrastructure as Code Software Architecture

March 11, 2024 Brae Webb

1 Introduction

Configuration management can be one of the more challenging aspects of software development. In
sophisticated architectures there are roughly two layers of configuration management: machine configu-
ration; and stack configuration.

Machine configuration encompasses software dependencies, operating system configuration, environ-
ment variables, and every other aspect of a machine’s environment.

Stack configuration encompasses the configuration of an architecture’s infrastructure resources. Infras-
tructure includes compute, storage, and networking resources.

In a sense, machine configuration is a subset of the stack configuration, however, stack configuration
tends to be focussed on a higher level of abstraction. In this course, our focus when looking at Infrastructure
as Code (laC) is stack configuration. We rely on containerization tools, such as Docker, to fill the hole left
by the lack of treatment of machine configuration.

2 Brief History

In the ‘lron Age’ of computing, installing a new server was rate limited by how quickly you could shop for
and order a new physical machine. Once the machine arrived at your company, some number of weeks
after the purchase, someone was tasked with setting it up, configuring it to talk to other machines, and
installing all the software it needed. Compared to the weeks it takes to acquire the machine, a day of
configuration is not so bad. Furthermore, because so much physical effort was needed to provision a new
machine, a single developer would only be responsible for a few machines.

With virtualization one physical machine can be the home of numerous virtual machines. Each one of
these machines requires configuration. Now, with new machines available within minutes and no physical
labour involved, spending a day of configuring is out of the question — introducing: infrastructure code.

3 Infrastructure Code

Infrastructure code arose to ease the burden of the increased complexity where each developer configured
and maintained many more machines. Infrastructure code encompasses any code that helps manage our
infrastructure. Infrastructure code can often be quite simple. A shell script which installs dependencies
is infrastructure code. There's an assortment of infrastructure code out in the world today, ranging from
simple shell scripts up to more sophisticated tools such as Ansible and Terraform.

Definition 1. Infrastructure Code
Code that provisions and manages infrastructure resources.

Definition 2. Infrastructure Resources

Compute resources, networking resources, and storage resources.

To explore the range of infrastructure code available, skim the below examples of infrastructure code
in BASH, Python, and Terraform. Each snippet performs the same functionality. Infrastructure Code does
not have to be strictly tools such as Terraform, although the two are often conflated. One thing which
should be noted is that Infrastructure Code specific languages, unlike most traditional software, is tending
towards a declarative paradigm.

#!/bin/bash
SG=$ (aws ec2 create-security-group ...)
aws ec2 authorize-security-group-ingress --group-id "$SG"

INST=$(aws ec2 run-instances --security-group-ids "$SG" \
--instance-type t2.micro)

import boto3

def create_instance():
ec2_client = boto3.client("ec2", region_name="us-east-1")
response = ec2.create_security_group(...)
security_group_id = response['Groupld']

data = ec2.authorize_security_group_ingress(...)

instance = ec2_client.run_instances(
SecurityGroups=[security_group_id],
InstanceType="t2.micro",

resource "aws_instance" "hextris-server" {
instance_type = "t2.micro"
security_groups = [aws_security_group.hextris-server.name]

resource "aws_security_group" "hextris-server" {
ingress {
from_port = 80
to_port = 80

4 Infrastructure as Code

In this course, we have chosen to make a distinction between Infrastructure Code and Infrastructure as Code.
We define Infrastructure Code as above, as code which manages infrastructure. We separately define In-
frastructure as Code as the practices of treating Infrastructure Code as if it were traditional code. In the real
world no distinction is made. We now introduce Infrastructure as Code and clarify why this distinction is
important.

Definition 3. Infrastructure as Code
Following the same good coding practices to manage Infrastructure Code as standard code.

Given the above definition of IaC, the natural follow-up question is ‘what are good coding practices?.
Before reading further, pause for a moment and consider what coding practices you follow when devel-
oping software that you would consider good practice. Got some ideas? Good, let's enumerate a few that
we think are important.

4.1 Everything as Code

Everything as Code is a good coding practice which seems so obvious in regular programming that it is
rarely discussed. The idea is to ensure that your code does not depend on manual tasks being performed.
Unfortunately, as developers are already familiar with their cloud platform's Ul, it can be easy to take the
easy way and to quickly provision a resource in the Ul.

Introducing manual changes outside of your Infrastructure Code creates configuration drift, infrastruc-
ture configuration which has diverged from your Infrastructure Code. Configuration drift can produce
snowflake machines, unique machines which your project depends on but no one can safely recreate. Once
you introduce just one snowflake machine into your infrastructure, the benefit of reproducibility afforded
by laC is lost.

4.2 Version Control

We hope that everyone can agree that version control in regular code is a luxury we would not wish to
live without. It should then be common sense to apply the benefits of version control; restorable code,
accountable code, and working collaboratively to Infrastructure Code.

There is however, one significant catch with versioning infrastructure code: state. Most Infrastructure
Code tools utilize some form of state. In Terraform, applying changing updates a file called terraform.tfstate.
The state is important to map the resources specified in Infrastructure Code to their real-world counter-
parts. However, the state is updated frequently and needs to be kept in live-sync between all developers.
These requirements make version controlling state a generally bad idea. The solution is counter-intuitively
a remote state which exists outside of Terraform controlled infrastructure and out of reach of version con-
trol. A remote state might exist on an S3 bucket which all developers can access and update in real time.
An non version controlled file such as this might seem like a step backwards, however, if you consider it as
a cache sitting between your Infrastructure Code and your infrastructure it is a slightly nicer pill to swallow.

4.3 Automation

The goal of Infrastructure Code is to help developers manage the complexity of resource management
via automation. In order to maximize our confidence that Infrastructure Code is reflected in reality, it is

3

important that our build pipelines provide an assurance of consistency.

There are two methods for achieving consistency through automation: fail the pipeline if the Infras-
tructure Code would change the reality; or make changes to reality in our pipeline. Either of these options
would ensure that the checked-in Infrastructure Code is an accurate reflection of reality that developers
can safely build atop.

4.4 Code Reuse

A good developer should embody the practice of working smarter not harder — it's the core practice of our
industry. When developing Infrastructure Code it is important to remember that you are (likely) not the
first to solve this problem. You're not the first person to connect a public EC2 instance to an S3 bucket. A
good coding practice that happens to be a win-win for everyone is code reuse. You can't copy and paste
another developer's mouse clicks to configure their server via a Ul, but you can, and in most cases should,
import the Terraform module they published to configure servers in just the way you needed.

4.5 Testing

WEell cover testing in the lecture :)

5 Conclusion

We have looked at Infrastructure Code which enables developers to manage the vast amount of infrastruc-
ture resources necessitated by the Cloud Age. Then we explored the benefits of applying the good coding
practices we know and love from regular programming to Infrastructure Code. We termed this practice
Infrastructure as Code despite the tools (Infrastructure Code) and practices (Infrastructure as Code) being
combined in the real world as Infrastructure as Code. It is important to note that laCis still in relatively early
stages, there are a number of issues which need to be addressed, such as: importing existing infrastructure;
improving state management; and enabling proper refactoring. Despite these issues, it is the best system
we have to date and a significant improvement on manual management.

Infrastructure as Code is the worst form of infrastructure management except for all those
other forms that have been tried from time to time.

— Paraphrased Winston Churchill

	Infrastructure as Code
	Introduction
	Brief History
	Infrastructure Code
	Infrastructure as Code
	Everything as Code
	Version Control
	Automation
	Code Reuse
	Testing

	Conclusion

