
Lecture Notes in Software Engineering

Layered Architecture
February 19, 2024

Richard Thomas & Brae Webb

Presented for the Software Architecture course
at the University of Queensland



Last Updated on 2024/02/13

Layered Architecture Software Architecture

February 19, 2024 Richard Thomas & Brae Webb

1 Introduction
In the beginning developers created the big ball of mud. It was without form and void, and darkness was
over the face of the developers1. The big ball of mud is an architectural style identified by it’s lack of architec-
tural style [1]. In a big ball of mud architecture, all components of the system are allowed to communicate
directly with each other. If the GUI code wants data from the database, it will write an SQL query and send
it to directly to the database. Likewise, if the code which primarily talks to the database decides the GUI
needs to be updated in a particular way, it will do so.

The ball of mud style is a challenging system to work under. Modifications can come from any direc-
tion at any time. Akin to a program which primarily uses global variables, it is hard, if not impossible, to
understand everything that is happening or could happen.

Aside

Code examples in these notes are works of fiction. Any resemblance to a working code is pure
coincidence. Having said that, python-esque syntax is often used for its brevity. We expect that
you can take away the important points from the code examples without getting distracted by the
details.

 import gui
 import database

 button = gui.make_button("Click me to add to counter")
 button.onclick(e =>
 database.query("INSERT INTO clicks (time) VALUES {{e.time}}"))

Figure 1: A small example of a big ball of mud architecture. This type of software is fine for experimentation
but not for any code that has to be maintained. It also does not work well at scale.

2 Monolith Architecture
And architects said, “let there be structure”, and developers saw that structure was good. And architects
called the structure modularity2.

The monolithic software architecture is a single deployable application, running on a computer. There is
a single code-base for the application and all developers work within that code-base. An example mono-
lith application would be one of the games developed by DECO28003 or CSSE32004 students at UQ5.

1Liberties taken from Genesis 1:1-2.
2Liberties taken from Genesis 1:3-5.
3https://my.uq.edu.au/programs-courses/course.html?course_code=DECO2800
4https://my.uq.edu.au/programs-courses/course.html?course_code=CSSE3200
5https://www.uq.edu.au/

1

https://my.uq.edu.au/programs-courses/course.html?course_code=DECO2800
https://my.uq.edu.au/programs-courses/course.html?course_code=CSSE3200
https://www.uq.edu.au/
https://www.biblegateway.com/passage/?search=gen+1&version=ESV
https://www.biblegateway.com/passage/?search=gen+1&version=ESV
https://my.uq.edu.au/programs-courses/course.html?course_code=DECO2800
https://my.uq.edu.au/programs-courses/course.html?course_code=CSSE3200
https://www.uq.edu.au/


(e.g. Retroactive6 or Gardens of the Galaxy7). A monolith should follow design conventions and be well
structured and modular (i.e. it is not a big ball of mud).

Figure 2: Gardens of the Galaxy
Deployment Diagram

Most developers are introduced to the monolith implicitly when they
learn to program. They are told to write a program, and it is a single
executable application. This approach is fine, even preferred, for small
projects. It often becomes a problem for large, complex software sys-
tems.

2.1 Advantages
The advantages of a monolith are that it is easy to develop, deploy and
test. A single code-base means that all developers know where to find all
the source code for the project. They can use any IDE for development
and simple development tools can work with the code-base. There is no
extra overhead that developers need to learn to work on the system.

Being a single executable component, deployment is as simple as copying the executable on to a com-
puter or server.

System and integration testing tends to be easier with a monolith, as end-to-end tests are executing
on a single application. This often leads to easier debugging once errors are found in the software. All
dependencies and logic are within the application.

There are also fewer issues to do with logging, exception handling, monitoring, and, to some extent,
scalability if it is running on a server.

2.2 Disadvantages
The drawbacks of a monolith are complexity, coupling and scalability. Being a single application, as it gets
larger and more complex, there is more to understand. It becomes harder to know how to change existing
functionality or add new functionality without creating unexpected side effects. A catch phrase in software
design and architecture is to build complex systems, but not complicated systems. Monoliths can easily
become complicated as they grow to deliver complex behaviour.

Related to complexity is coupling, with all behaviour implemented in one system there tends to be
greater dependency between different parts of the system. The more dependencies that exist, the more
difficult it is to understand any one part of the system. This means it is more difficult to make changes to
the system or to identify the cause of defects in the system.

A monolith running on a server can be scaled by running it on multiple servers. Because it is a monolith,
without dependencies on other systems, it is easy to scale and replicate the system. The drawback is that
you have to replicate the entire system on another server. You cannot scale components of the system
independently of each other. If the persistence logic is creating a bottleneck, you have to copy the entire
application on to another server to scale the application. You cannot user servers that are optimised to
perform specialised tasks.

Persistent state is a particular challenge when scaling a monolith. If the system is replicated on multiple
servers, the system has to be designed so that changes to the persistent data on one server does not
invalidate behaviour executing on another server.

6https://github.com/UQdeco2800/2021-studio-7
7https://github.com/UQcsse3200/2023-studio-1)

2

https://github.com/UQdeco2800/2021-studio-7
https://github.com/UQcsse3200/2023-studio-1)
https://github.com/UQdeco2800/2021-studio-7
https://github.com/UQcsse3200/2023-studio-1)


3 Layered Architecture
And architects said, “let there be an API between the components, and let it separate component from
component8”.

The first architectural style we will investigate is a layered architecture. Layered architecture (also called
multi-tier or tiered architecture) partitions software into specialised clusters of components (i.e. layers)
and restricts how components in one layer can communicate with components in another layer. A lay-
ered architecture creates superficial boundaries between the layers. Often component boundaries are not
enforced by the implementation technology but by architectural policy.

The creation of these boundaries provides the beginnings of some control over what your software is
allowed to do. Communication between the component boundaries is done via well-specified contracts.
The use of contracts results in each layer knowing precisely how it can be interacted with. Furthermore,
when a layer needs to be replaced or rewritten, it can be safely substituted with another layer fulfilling the
contract.

3.1 Standard Form

Presentation Layer

Business Layer

Persistence Layer

Database Layer

Figure 3: The traditional specialised components of a layered architecture.

The traditional components of a layered architecture are seen in Figure 3. This style of layered archi-
tecture is the four-tier architecture. Here, our system is composed of a presentation layer, business layer,
persistence layer, and database layer.

The presentation layer takes data and formats it in a way that is sensible for humans. For command line
applications, the presentation layer would accept user input and print formatted messages for the user. For
traditional GUI applications, the presentation layer would use a GUI library to communicate with the user.

The business layer is the logic central to the application. The interface to the business layer is events or
queries triggered by the presentation layer. It is the responsibility of the business layer to determine the
data updates or queries required to fulfil the event or query.

The persistence layer is essentially a wrapper over the database, allowing more abstract data updates or
queries to be made by the business layer. One advantage of the persistence layer is it enables the database
to be swapped out easily.

Finally, the database layer is normally a commercial database application like MySQL, Postgres, etc.
which is populated with data specific to the software. Figure 4 is an over-engineered example of a layered
architecture.

8Liberties taken from Genesis 1:6-8.

3

https://www.biblegateway.com/passage/?search=gen+1&version=ESV


» cat presentation.code

 import gui
 import business

 button = gui.make_button("Click me to add to counter")
 button.onclick(business.click)

Figure 4: An unnecessarily complicated example of software components separated into the standard
layered form.

» cat business.code

 import persistence

 def click():
 persistence.click_counts.add(1)

» cat persistence.code

 import db

 class ClickCounter:
 clicks = 0

 def constructor():
 clicks = db.query("SELECT COUNT(*) FROM clicks")

 def get_click():
 return clicks

 def add(amount):
 db.query("INSERT INTO clicks (time) VALUES {{time.now}}")

 click_counts = ClickCounter()

Figure 4: An unnecessarily complicated example of software components separated into the standard
layered form.

One of the key benefits afforded by a well designed layered architecture is each layer should be in-
terchangeable. An example is an application which starts as a command line application, but can later be
adapted to a GUI application by just replacing the presentation layer.

4



3.2 Deployment Variations
While the layered architecture is popular with software deployed on one machine (a non-distributed sys-
tem), layered architectures are also often deployed to separate machines.

Each layer can be deployed as separate binaries on separate machines. A simple, common variant of
distributed deployment is separating the database layer, as shown in figure 5. Since databases have well
defined contracts and are language independent, the database layer is a natural first choice for physical
separation.

Presentation Layer

Business Layer

Persistence Layer

Database Layer

Figure 5: Traditional layered architecture with a separately deployed database.

In a well designed system, any layer of the system could be physically separated with minimal diffi-
culty. The presentation layer is another common target, as shown in figure 6. Physically separating the
presentation layer gives users the ability to only install the presentation layer and allow communication to
other software components to occur via network communication.

Presentation Layer

Business Layer

Persistence Layer

Database Layer

Figure 6: Traditional layered architecture with a separately deployed database and presentation layer.

This deployment form is very typical of web applications. The presentation layer is deployed as a
HTML/JavaScript application which makes network requests to the remote business layer. The business
layer then validates requests and makes any appropriate data updates.

Some database driven appliation generators will embed the application logic in the database code so
that all logic runs on the database server. The presentation layer is then separated from the application
logic, as shown in figure 7.

5



Presentation Layer

Business Layer

Persistence Layer

Database Layer

Figure 7: Traditional layered architecture with a separately deployed presentation layer.

An uncommon deployment variation (figure 8) separates the presentation and business layers from
the persistence and database layers. An updated version of our running example is given in figure 9, the
presentation layer remains the same but the communication between the business and persistence layers
is now via REST.9

Presentation Layer 192.168.0.20

Business Layer 192.168.0.20

Persistence Layer 192.168.0.40

Database Layer 192.168.0.40

Figure 8: A contrived example of a deployment variation.
9https://restfulapi.net/

6

https://restfulapi.net/


» cat business.code

 import http

 def click():
 http.post(
 address="192.168.0.40",
 endpoint="/click/add",
 payload=1
 )

» cat persistence.code

 import db
 import http

 class ClickCounter:
 ... # as above

 click_counts = ClickCounter()

 http.on(
 method="post",
 endpoint="/click/add",
 action=(payload => click_counts.add(payload))
 )

Figure 9: Code adapted for the contrived example of a deployment variation.

3.3 Layered Principles
Separating software into layers is intended to increase the modularity and isolation of the components
within each layer. Isolation is provided by defining a public interface through which all communication
with the layer is to be performed.

Definition 1. Layer Isolation Principle
Layers should not depend on implementation details of another layer. Layers should only commu-
nicate through well defined interfaces (contracts).

Layering should be enforced. One layer should not “reach across” another layer to access behaviour
implemented in some other layer. For example, in our standard form of the layered architecture, if the
presentation layer uses a component from the presistence layer, it defeats the intent of having a business
layer in the architecture.

A consequence of this is chains of message passing. An extreme example would be if the presentation
layer needed to display some information from the database, the presentation layer would send a message
to the business layer to get the object to be displayed. The business layer would send a message to the

7



persistence layer to retrieve the object. The persistence layer would then send a message to the database
layer to load the object.

Typically, there would not be a need to send messages from the highest to lowest layer. If the business
layer knew it had an up-to-date copy of the object, it would return it to the presentation layer without mes-
saging the persistence layer. If the persistence layer had already retrieved the object from the database, it
would return it to the business layer without messaging the database layer.

Definition 2. Neighbour Communication Principle
Components can communicate across layers only through directly neighbouring layers.

Layers should be hierarchical. Higher layers depend on services provided by lower layers but not vice
versa. This dependency is only through a public interface, so that components in the lower layer may be
replaced by another component implementing the same interface. Components in a lower layer should
not use components from a higher layer, even if the layers are neighbours.

Definition 3. Downward Dependency Principle
Higher-level layers depend on lower layers, but lower-level layers do not depend on higher layers.

Downward dependency does not mean that data is not passed to higher layers. It does not even mean
that control cannot flow from a lower level to a higher level. The restriction is on dependencies or usage,
not on data or control flow. A lower layer should not use components from a higher layer, even through
the higher layer’s interface. Breaking this increases the overall coupling of the system and means it is no
longer possible to replace a lower layer with another layer.

Lower layers need a mechanism to be able to notify a higher layer that something has happened, of
which the higher layer needs to be aware. A common example of this is the presentation layer wants to
be notified if data that it is displaying has been updated in a lower layer. The observer design pattern10

is a common solution to this notification issue. The component responsible for displaying the data in the
presentation layer implements the Observer interface. The object containing data that may be updated
implements the Subject interface. The subject and observer interfaces are general purpose interfaces that
do not belong to the presentation layer. The lower layer uses the observer interface to notify the presen-
tation layer that data has changed and the presentation layer can decide whether to retrieve the new data
and display it. This allows the higher layer to be notified of events, without the lower layer using anything
from the higher layer.

The same issue occurs with error handling and asynchronous messaging. If a component in a higher
layer sends a message, through an interface, to a component in a lower layer, the component in the lower
layer needs a mechanism to report errors. A simple boolean or error code return may work in some sit-
uations, but often that is not appropriate. If the message is meant to return a value, in most languages it
cannot also return an error result. There may also be different types of errors that need to be communi-
cated to the higher layer. (e.g. The call from the higher layer broke the contract specified in the interface.
Or, the lower layer is encountering a transient fault and the higher layer should try again later.) Excep-
tion handling works, if all layers are within one executable environment, but a key purpose of a layered
architecture is to allow separation of the layers, so throwing an exception is not appropriate.

Callbacks11 are used to deal with this issue for both error handling and asynchronous messaging. A
component from a higher layer in the architecture passes a function as a parameter when it sends a mes-
sage to a component in a lower layer. This function is called by the component in the lower layer of the
architecture to report an error or to indicate that an asynchronous call has completed.

10https://refactoring.guru/design-patterns/observer
11https://www.codefellows.org/blog/what-is-a-callback-anyway/

8

https://refactoring.guru/design-patterns/observer
https://www.codefellows.org/blog/what-is-a-callback-anyway/
https://refactoring.guru/design-patterns/observer
https://www.codefellows.org/blog/what-is-a-callback-anyway/


Definition 4. Upward Notification Principle
Lower layers communicate with higher layers using general interfaces, callbacks and/or events. De-
pendencies are minimised by not relying on specific details published in a higher layer’s interface.

The subject and observer interfaces are examples of supporting logical infrastructure. Logging fram-
works are another example of supporting infrastructure. Commonly, all layers will need to use the logging
framework. These are typically defined in separate “layers” that can be used by any of the other layers.
These are sometimes called sidecar or acquaintance layers, as visually they are often drawn on the side of
the layered diagram.

Figure 10: Layered architecture with sidecar.

Definition 5. Sidecar Spanning Principle
A sidecar layer contains interfaces that support complex communication between layers (e.g. design
patterns like the observer pattern) or external services (e.g. a logging framework).

A purist design approach says that a sidecar layer may only contain interfaces. In some environments,
an architecture may decide that multiple sidecars are beneficial, and may even use these for reusable
components from broader organisational systems or for objects that hold data passed to higher layers.
Figure 11 is an example of using sidecars for both of these purposes in a J2EE12 application.

Figure 11: Layered architecture with sidecars delivering implementation (figure 2.27 in Clements et al, 2010)
[2].

In the example shown in figure 11, the servlets and action classes layer is equivalent to the presentation
layer. The controller and service classes layers are a further partitioning of the business layer. The DAO

12https://www.oracle.com/java/technologies/appmodel.html

9

https://www.oracle.com/java/technologies/appmodel.html
https://www.oracle.com/java/technologies/appmodel.html


(Data Access Objects) classes layer is equivalent to the persistence layer. The database layer is not shown
in this example, which is common practice to hide it in diagrams focussing on the system’s architecture.

The Presentation DTOs (Data Transfer Objects) sidecar contains simple JavaBeans13 that contain data
that is to be displayed. This approach takes advantage of J2EE’s mechanism that automatically populates
and updates data in the presentation layer.

The Corporate DTOs and POJOs (Plain Old Java Objects) sidecar contains classes implemented by
corporate-wide systems, and which are shared between systems. These provide common data and be-
haviour that spans multiple layers in many systems.

3.3.1 Closed/Open Layers

Some textbooks discuss the concept of closed and open layers. This is a way to describe how communi-
cation flows between layers. Layers are categorised as either open or closed. By default layers are closed.
Closed layers prevent direct communication between their adjacent layers, i.e. they enforce the neighbour
communication principle. Figure 12 shows the communication channels (as arrows) in a completely closed
architecture.

Presentation Layer Closed

Business Layer Closed

Persistence Layer Closed

Database Layer Closed

Figure 12: All layers closed requiring communication to pass through every layer.

An architecture where all layers are closed provides maximum isolation. A change to the communica-
tion contracts of any layer will require changes to at most one other layer.

Some architects will advocate that there are some situations where an open layer may be useful. Open
layers do not require communication to pass through the layer, other layers can “reach across” the layer.
The preferred approach is to use general interfaces, callbacks and/or events, as discussed in the sections
describing the downward dependency, upward notification, and sidecar spanning principles. This pro-
vides mechanisms that allow data and control to flow both up and down in a layered architecture, without
breaking the isolation principle that was the original intent of using a layered architecture. Open layers in
architecture design should be avoided.

Presentation Layer Closed

Business Layer Open

Persistence Layer Open

Database Layer Closed

Figure 13: A wolf in layer’s clothing [3].

13https://www.educative.io/edpresso/why-use-javabean

10

https://www.educative.io/edpresso/why-use-javabean
https://www.educative.io/edpresso/why-use-javabean


3.4 Advantages
The layer isolation principle means that the implementation of a layer can be changed without affecting
any other layer, as long as the interface does not change.

The layer isolation principle also means that a developer only needs to understand the public interface
to use a layer, and not its implementation details.

The neighbour communication and downward dependency principles mean that if a layer changes its
public interface, at most one other layer needs to change.

The upward notification and sidecar spanning principles mean that complex systems, with sophisti-
cated flows of control and data, can be implemented while maintaining the other layered architecture
design principles.

Lower layers in the architecture can be designed to deliver common services that may be reused across
multiple applications. (e.g. The persistence layer can be designed to allow general purpose access to the
database layer, allowing any type of database to be substituted into the system.)

Layers may be deployed on different computing infrastructure. This enables the hardware to be opti-
mised for the types of services provided by just one layer. It also enables scaling and replication by allowing
layers to be duplicated across multiple servers.

3.5 Disadvantages
Poorly designed layers will encourage developers to break the layered architecture design principles in
order to get the system to work. This can lead to a system that in detail more closely resembles a big ball
of mud, than a layered design.

Layering often introduces performance penalties. Requiring a chain of message passing to obtain a
service from a lower layer in the architecture adds to the cost of delivering the behaviour.

References
[1] B. Foote and J. Yoder, “Big ball of mud,” Pattern languages of program design, vol. 4, pp. 654–692, 1997.

[2] D. Garlan, F. Bachmann, J. Ivers, J. Stafford, L. Bass, P. Clements, and P. Merson, Documenting Software
Architectures: Views and Beyond. Addison-Wesley Professional, 2nd ed., 2010.

[3] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. Addison-Wesley Professional,
3rd ed., September 2012.

11


	Layered Architecture
	Introduction
	Monolith Architecture
	Advantages
	Disadvantages

	Layered Architecture
	Standard Form
	Deployment Variations
	Layered Principles
	Closed/Open Layers

	Advantages
	Disadvantages



