
Lecture Notes in Software Engineering

Microkernel Architecture
March 4, 2024

Richard Thomas

Presented for the Software Architecture course
at the University of Queensland



Last Updated on 2023/03/04

Microkernel Architecture Software Architecture

March 4, 2024 Richard Thomas

1 Introduction
The microkernel architecture aims to deliver sophisticated software systems while maintaining the quality
attributes of simplicity and extensibility. This is achieved by implementing a simple core system that is
extended by plug-ins that deliver additional system behaviour. Microkernel is also known as a “plug-in”
architecture.

Many common applications use the microkernel architecture. Web browsers, many IDEs (notably
Eclipse), Jenkins, and other tools all use this architecture. They deliver their core functionality and pro-
vide a plug-in interface that allows it to be extended. Eclipse1 is famous for being a simple editor that can
be extended to become a sophisticated software development tool through its plug-in interface.

Definition 1. Microkernel Architecture
A core system providing interfaces that allow plug-ins to extend its functionality.

Figure 1: Generic structure of the microkernel architecture.

For example, a web browser provides the core behaviour of rendering web pages. Plug-ins extend the
browser with specialised behaviour, such as a PDF viewer or dark mode reader.

2 Terminology
The microkernel architecture consists of four elements. The core system, plug-ins and plug-in interface
shown in figure 1, plus a registry.

Core system implements the system’s base functionality.

Plug-ins extend the system by providing independent, specialised behaviour.

Plug-in interface describes how the core system and plug-ins interact.

Registry tracks which plug-ins are available to the core system and how to access them.
1https://www.eclipse.org/downloads/packages/

1

https://www.eclipse.org/downloads/packages/
https://www.eclipse.org/downloads/packages/


The core system implements the minimal functionality that provides the base, or framework, of the
system. This may be the core functionality of the system, like the Eclipse editor or a web browser’s page
rendering engine. Alternatively, the core system may implement a general processing path, like a payroll
system’s payment process.

The payment process may be simply, identify an employee, calculate their fortnightly pay, and send
payment to their bank account. Calculating pay can be a very complex process2. There are different pay
rates, bonuses, incentives, salaried staff, staff paid commission, staff paid hourly rates, overtime rates,
penalty rates, deductions, taxes, and many other pay related calculations to consider for each individual.

Plug-ins are independent components that extend the behaviour of the core system. The simple ap-
proach is that the system is delivered as a monolith, including the core system and the plug-ins. In this
case the core system uses the plug-ins via a method invocation.

In the payroll example, plug-ins can remove the complexity of different pay adjustment calculations
from the core system by moving each calculation to a separate component. This also improves exten-
sibility, maintainability and testability of the system. New calculations can be added to the system by
implementing new plug-ins. As each plug-in is independent of the others, it is easier to implement a new
calculation, or change an existing one, than trying to do so in a large monolith. New plug-ins can be tested
independently and then integrated into the system for system testing.

There is usually a single standard interface between the core system and the plug-ins for a domain.
The interface defines the methods that the core system can invoke, data passed to the plug-in, and data
returned from the plug-in. A plug-in component implements the interface and delegates responsibilities
within the component to deliver its behaviour.

Figure 2 is an example of a possible interface for the pay adjusment calculation plug-ins. Each pay ad-
justment plug-in returns a MonetaryAmount indicating the amount by which the employee’s base pay is to
be adjusted in the pay period. The amount may be positive or negative. The employee, periodDetails,
employeeConditions and basePay objects are passed as parameters to the plug-in. The plug-in can re-
quest the data it needs from these objects to perform its calculation. The periodDetails object provides
data about the work performed by the employee during the pay period (e.g. time worked, overtime, higher
duties adjustments, ...). The employeeConditions set provides data about each of the employee’s pay
conditions (e.g. before tax deductions, union membership, ...).

 public interface PayAdjustmentPlugin {
 public MonetaryAmount adjustPay(Employee employee,
 WorkDetail periodDetails,
 Set<Condition> employeeConditions,
 MonetaryAmount basePay);
 }

Figure 2: Example plug-in interface for payroll system.

The registery records which plug-ins are available to the core system and how they are accessed. For
the simple case of plug-ins being used by method invocation, the registry just needs to record the name of
the plug-in and a reference to the object that implements the plug-in’s interface. For the payroll example,
this could be a simple map data structure. The core system could lookup a plug-in by its name and then
apply it by invoking the adjustPay method on the plug-in object.

2See the Queensland Health payroll disaster
https://www.henricodolfing.com/2019/12/project-failure-case-study-queensland-health.html

2

https://www.henricodolfing.com/2019/12/project-failure-case-study-queensland-health.html


3 Microkernel Principles
While the concept of a microkernel architecture is straightforward, there are some principles which should
be maintained to produce a maintainable and extendable architecture.

Definition 2. Independent Plug-in Principle
Plug-ins should be independent, with no dependencies on other plug-ins. The only dependency on
the core system is through the plug-in interface.

Plug-ins should be independent of each other. If a plug-in depends on other plug-ins it increases the
complexity of the design. This complexity is called coupling3, which is a measure of how dependent dif-
ferent parts of a system are on each other [1]. High coupling (many dependencies) makes it difficult to
understand the software, which in turn makes it difficult to modify and test the software. Consequently, if
a plug-in depends on other plug-ins it requires understanding the dependencies on the other plug-ins to
modify or test the plug-in. This can lead to an architecture that resembles a “big ball of mud”.

Plug-ins and the core system should be loosely coupled. The core system should only depend on the
plug-in interface and data returned via that interface, not any implementation details of individual plug-
ins. Plug-ins should only depend on the data passed to them via the plug-in interface. Plug-ins should not
rely on implementation details of the core system, nor its datastore. If plug-ins and the core system are
not isolated from each other by an interface, then any changes to the core system may require changes
to some or all of the plug-ins. Similarly, the plug-in interface should mean that any changes to the plug-in
will have no impact on the core system.

Definition 3. Standard Interface Principle
There should be a single interface that defines how the core system uses plug-ins.

Figure 3: Layered
architecture as example of

technical partitioning.

To provide an extensible design, the core system needs a standard way to
use plug-ins. This means that the plug-in interface needs to be the same for
all plug-ins. That way the core system can use any plug-in without needing to
know details about how the plug-in is implemented. This again is about reduc-
ing coupling between the core system and the plug-ins. The standard interface
principle means that there is no additional complexity if the core system uses
two plug-ins or two thousand plug-ins.

4 Architecture Partitioning

4.1 Technical Partitioning
The course notes about layered architecture [2] described the idea of partition-
ing an architecture into layers, as in figure 3.

This approach to partitioning the architecture is called technical partitioning.
Each layer represents a different technical capability. The presentation layer
deals with user interaction. The business layer deals with the application’s core
logic. The persistence layer deals with storing and loading data. The database
layer deals with file storage and access details.

An advantage of technical partitioning is that it corresponds to how devel-
opers view the code. Another advantage is that all related code resides in a

3https://leanpub.com/isaqbglossary/read#term-coupling

3

https://leanpub.com/isaqbglossary/read#term-coupling
https://leanpub.com/isaqbglossary/read#term-coupling


single layer of the architecture, making each layer cohesive4 from a technical perspective. This makes
it easier to work with different parts of the code that deal with the same technical capability. The layer
isolation, neighbour communication, downward dependency, and upward notification principles help reduce
coupling between layers.

A disadvantage of technical partitioning is that business processes cut across technical capabilities.
Consider when a customer adds a new product to their shopping cart in the Sahara eCommerce example
from the architectural views notes [3]. In a technically partitioned architecture, code to implement this is
required in all layers of the architecture. If the team is structured with specialist developers who work on
different layers of the architecture, they all need to collaborate to implement the behaviour, which adds
communication overheads to the project.

Another disadvantage is the potential for higher data coupling, if all domain data is stored in a single
database. If it is decided that the system needs to be split into distributed software containers for scala-
bility, the database may need to be split to have separate databases for each distributed container. If the
database was originally designed to cater for a monolith architecture, large parts of the database may need
to be refactored.

Note that in figure 3, and most of the following figures, deployment nodes are used to explicitly indicate
where components are executing in different environments.

4.2 Domain Partitioning
Domain partitioning is an alternative approach, where the architecture is split into partitions (or major com-
ponents) corresponding to independent business processes or workflows (the domains). The implemen-
tation of a domain is responsible for delivering all of that workflow’s behaviour. Eric Evans popularised
domain partitioning in his book Domain-Driven Design [4]. Figure 4 is an example of domain partitioning
for an on-line store, similar to the Sahara eCommerce example from the architectural views notes [3].

Figure 4: Domain partitioning example.
4https://leanpub.com/isaqbglossary/read#term-cohesion

4

https://leanpub.com/isaqbglossary/read#term-cohesion
https://leanpub.com/isaqbglossary/read#term-cohesion


An advantage of domain partitioning is that it can model how the business functions, rather than it
being structured based on technical decisions. This results in message flows within the software matching
how communication happens in the problem domain. This makes it easier to discuss features, and the
high-level view of how they are implemented, with business stakeholders who are familiar with how the
business operates.

If the domain partitions are independent of each other, it usually makes it easier to split the system
into distributed software containers. Even if the system starts with a single database, the independence of
domain partitions is likely to lead to a design with lower data coupling, making it easier to split the database.

Another advantage of domain partitioning is that it fits well with an agile or continuous delivery process.
A single user story will be implemented entirely within one domain. This also makes it easier to implement
multiple user stories concurrently, if they are all from different domains.

A disadvantage of domain partitioning is that boundary code is distributed throughout all the partitions.
This means that any large changes to a particular boundary (e.g. changing the persistence library) will result
in changes to all domain partitions. Boundary code is code that interacts with actors or agents outside of
the system. The two common technical partitions of the presentation and persistence layers are examples
of boundary code. The presentation layer is the boundary between the system and the users. The persis-
tence layer is the boundary between the system and the storage mechanisms. Other boundary partitions
may be for message queues or network communication.

It is possible for each domain partition to use technical partitioning within it, to provide some of the
lower coupling benefits of a layered architecture within the domain.

4.3 Achitecture Patterns and Partitioning
Different architecture patterns are biased more towards technical or domain partitioning. Those that fo-
cus on technical structure are biased towards technical partitioning (e.g. layered architecture). Those that
focus on message passing between components are biased towards domain partitioning (e.g. microser-
vices architecture). The core system of the microkernel architecture can follow either technical or domain
partitioning. A consequence of this leads to a variation of principle 3.

Definition 4. Domain Standard Interface Principle
Each domain should have a single interface that defines how the domain uses plug-ins.

Figure 5: Microkernel architecture with domains.

Some domains may share a plug-in interface,
but allowing domains to have different plug-in in-
terfaces means that each business process can be
customised independently by a set of plug-ins.

In figure 5, deployment nodes are used to ex-
plicitly indicate that the core system and plug-ins
are conceptually separate from each other. They
are all contained within the Application node to in-
dicate that they are still all part of one monolithic
application.

5 Extensions
While the microkernel architecture often imple-
ments the core system as a monolith and it, along
with all its plug-ins, is often deployed as a single

5



monolith (e.g. a web browser), that is not the only approach to using the microkernel architecture.

5.1 Distributed Microkernel
The internal partitions of the core system can be distributed to run on different computing infrastructure.
Figure 6 is an example of implementing a distributed microkernel architecture using three computing tiers.

Figure 6: Microkernel architecture distributed by technical partitions.

The presentation layer runs on a frontend such as a web or mobile application. It is possible that the
presentation layer could have its own set of plug-ins. The business and persistence logic run on a backend
server and have their own set of plug-ins. The database runs on a separate database server, and typically
does not have any plug-ins from the application’s perspective.

5.2 Alternative Contracts
Figure 2 was an example interface that could be used if plug-ins were invoked directly within the core sys-
tem. This is possible if the plug-ins are implemented within the application or are loaded as code modules
at run time (e.g. via JAR or DLL files).

There may be times when plug-ins are external services used by the core system. In these situations
communication is via some communication protocol. Remote method invocation would still allow the core
system to use a compiled interface. Registration of components would become a little more complicated,
as the core system would need a communication interface to be notified of the availability of plug-ins.

6



More commonly, the communication protocol will be some other mechanism (e.g. REST, as shown
in figure 7). In this case, the registry needs to record more information than just the name and interface
of a plug-in. The registry will need information about the communication pathway (e.g. URL of the REST
endpoint). It will also need details about the data structure passed to the plug-in and returned by the
plug-in.

Figure 7: Microkernel architecture – separate plug-in services using REST.

5.3 Plug-in Databases
As mentioned in the discussion of principle 2, plug-ins should not use the core system’s data directly. The
core system should pass to the plug-in any data that it needs. For sophisticated plug-ins, they may need
their own persistent storage. They should not request the core system to manage this. Rather, these plug-
ins should maintain their own databases, as shown in figure 8.

Figure 8: Microkernel architecture with plug-ins maintaining their own databases.

5.4 Non-Standard Interfaces
Principles 3 and 4 indicate that each domain, or the entire core system, should use a single plug-in interface.
This is not always possible when the plug-ins are services provided by external agencies. In these situations
you would use the adapter design pattern5 to isolate the external service’s interface from the core system.

As shown in figure 9, an adapter plug-in is implemented that manages communication with the exter-
nal service. From the core system’s perspective, the external system is just like any other plug-in.

5https://refactoring.guru/design-patterns/adapter

7

https://refactoring.guru/design-patterns/adapter
https://refactoring.guru/design-patterns/adapter


Figure 9: Adapter plug-ins to work with third party services.

6 Conclusion
The microkernel architecture is a suitable option for systems were extensibility is a key quality attribute.
Following the microkernel design principles will lead to a design where the core system and plug-ins are
not affected by changes to each other. Existing plug-ins can be replaced and new plug-ins added with no
impact on the core system.

References
[1] G. Starke, U. Becker, C. Lilienthal, M. Mahlberg, S. Kölsch, A. Lorz, A. Rausch, R. Rhoades, S. Ficht-

ner, P. Ghadir, M. Gharbi, M. Bohlen, M. Hillert, P. Hruschka, and W. Fahl, iSAQB Glossary of Software
Architecture Terminology. International Software Architecture Qualification Board, November 2020.
https://leanpub.com/isaqbglossary/read.

[2] R. Thomas and B. Webb, “Layered architecture,” February 2023. https://csse6400.uqcloud.net/
handouts/layered.pdf.

[3] R. Thomas and B. Webb, “Architectural views,” February 2023. https://csse6400.uqcloud.net/
handouts/views.pdf.

[4] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley Profes-
sional, August 2003.

8

https://leanpub.com/isaqbglossary/read
https://csse6400.uqcloud.net/handouts/layered.pdf
https://csse6400.uqcloud.net/handouts/layered.pdf
https://csse6400.uqcloud.net/handouts/views.pdf
https://csse6400.uqcloud.net/handouts/views.pdf

	Microkernel Architecture
	Introduction
	Terminology
	Microkernel Principles
	Architecture Partitioning
	Technical Partitioning
	Domain Partitioning
	Achitecture Patterns and Partitioning

	Extensions
	Distributed Microkernel
	Alternative Contracts
	Plug-in Databases
	Non-Standard Interfaces

	Conclusion


