
Lecture Notes in Software Engineering

Pipeline Architecture
February 26, 2024

Brae Webb & Richard Thomas

Presented for the Software Architecture course
at the University of Queensland

Last Updated on 2023/02/26

Pipeline Architecture Software Architecture

February 26, 2024 Brae Webb & Richard Thomas

1 Introduction
Pipeline architectures take the attribute of modularity of a system to the extreme. Pipeline architectures
are composed of small well-designed components which can ideally be combined interchangeably. In
a pipeline architecture, input is passed through a sequence of components until the desired output is
reached. Almost every developer will have been exposed to software which implements this architec-
ture. Some notable examples are bash, hadoop, some older compilers, andmost functional programming
languages.

Definition 1. Pipeline Architecture
Components connected in such a way that the output of one component is the input of another.

cat assignment.py grep "f***" wc -l tee anger.txt

Figure 1: An example of using bash’s pipeline architecture to perform statistical analysis.

The de-facto example of a well-implemented pipeline architecture is bash, we will explore the philos-
ophy that supports the architecture shortly. The above diagram represents the bash command,

$ cat assignment.py | grep "f***" | wc -l | tee anger.txt

.
If you are unfamiliar with Unix processes (start learning quick!).

cat Send the contents of a file to the output.

grep Send all lines of the input matching a pattern to the output.

wc -l Send the number of lines in the input to the output.

tee Send the input to stdout and a file.

2 Terminology
As illustrated by Figure 2, a pipeline architecture consists of just two elements;

Filters modular software components, and

Pipes the transmission of data between filters.

1

Filter Filter Filter
Pipe Pipe

Figure 2: A generic pipeline architecture.

Filters themselves are composed of four major types:

Producers Filters from which data originates are called producers, or source filters.

Transformers Filters whichmanipulate input data and output to the outgoing pipe are called transformers.

Testers Filters which apply selection to input data, allowing only a subset of input data to progress to the
outgoing pipe are called testers.

Consumers The final state of a pipeline architecture is a consumer filter, where data is eventually used.

The example in Figure 1 shows how bash’s pipeline architecture can be used tomanipulate data in Unix
files. Figure 3 labels the bash command using the terminology of pipeline architectures.

cat assignment.py

Producer

grep "f***"

Tester

wc -l

Transformer
tee anger.txt
Consumer

Figure 3: Figure 1 with labelled filter types.

3 Pipeline Principles
While the concept of a pipeline architecture is straightforward, there are some principles which should be
maintained to produce a well-designed and re-usable architecture.

Definition 2. One Direction Principle
Data should flow in one direction, this is downstream.

The data in a pipeline architecture should all flow in the same direction. Pipelines should not have
loops nor should filters pass data back to their upstream or input filter. The data flow is allowed to split into
multiple paths. For example, figure 4 demonstrates a potential architecture of a software which processes
the stream of user activity on a website. The pipeline is split into a pipeline which aggregates activity on
the current page and a pipeline which records the activity of this specific user.

TheOneDirectionPrinciplemakes thepipeline architecture a poor choice for applicationswhich require
interactivity, as the results are not propagated back to the input source. However, it is a good choice when
you have data which needs processing with no need for interactive feedback.

Definition 3. Independent Filter Principle
Filters should not rely on specific upstream or downstream components.

In order to maintain the reusability offered by the pipeline architecture, it is important to remove de-
pendencies between individual filters. Where possible, filters should be able to be moved freely. In the
example architecture in figure 4, the EventCache component should be able to work fine without the Tag-
Time component. Likewise, EventCache should be able to process data if the Anonymize filter is placed
before it.

2

Figure 4: Pipeline architecture for processing activity on a website for later analytics.

Producers and consumersmay assume that they have no upstream or downstream filters respectively.
However, a producer should be indifferent to which downstream filter it feeds into. Likewise a consumer
should not depend on the upstream filter.

Corollary 1. Generic Interface
The interface between filters should be generic.

Corollary 1 follows from definition 3. In order to reduce the dependence on specific filters, all filters of
a system should implement a generic interface. For example, in bash, filters interface through the piping
of raw text data. All Unix processes should support raw text input and output.

Corollary 2. Composable Filters
Filters (i.e. Transformers & Testers) can be applied in any order.

Corollary 2 also follows from definition 3. If filters are independent they can be linked together in any
order. This means that a software designer can deliver different behaviour based on the order in which
filters are linked. For example, in bash, applying a tester before or after a transformer can lead to different
results.

4 Conclusion
A pipeline architecture is a good choice for data processing when interactivity is not a concern. Concep-
tually pipelines are very simple. Following the principles of a pipeline architecture will deliver a modular
system which supports high reuse.

3

	Pipeline Architecture
	Introduction
	Terminology
	Pipeline Principles
	Conclusion

