
Lecture Notes in Software Engineering

Architectural Views
February 26, 2024

Richard Thomas & Brae Webb

Presented for the Software Architecture courseat the University of Queensland

Last Updated on 2024/02/26

Architectural Views Software Architecture
February 26, 2024 Richard Thomas & Brae Webb

1 Introduction
Understanding software is hard. It is often claimed that reading code is harder than writing code1. Thisprinciple is used to explain a programmer’s innate desire to constantly rewrite their code from scratch. Ifsoftware is hard to understand, then understanding software architecture from the detail of the code is nearimpossible. Fortunately, architects have developed a number of techniques to manage this complexity.A software architecture consists of many dimensions. Programming languages, communication proto-cols, the operating systems and hardware used, virtualisation used, and the code itself are a subset of themany dimensions which comprise a software architecture. Asking a programmer’s monkey brain to under-stand, communicate, or document every dimension at once is needlessly cruel. This is where architecturalviews come in.Architectural views, or architectural projections, are a representation of one or more related aspectsof a software architecture. Views allow us to focus on a particular slice of our multi-dimensional softwarearchitecture, ignoring other irrelevant slices. For example, if we are interested in applying a security patchto our software then we are only interested in the view which tells us which software packages are usedon each host machine.The successful implementation of any architecture relies on the ability for the architectural views to bedisseminated, understood, and implemented. For some organisations, the software is simple enough, orthe team small enough, that the design can be communicated through word of mouth. As software be-comes increasingly complex and developers number in the thousands, it is critical for design to be com-municated as effectively as possible. In addition to facilitating communication, architectural views alsoenable architectural policies to be designed and implemented.
2 C4 Model
Simon Brown’s C4 model provides a set of abstractions that describe the static structure of the softwarearchitecture [3]. The C4 model uses these abstractions in a hierarchical set of diagrams, each leading tofiner levels of detail. The hierarchical structure is based on the idea that a software system is composed ofcontainers, which are implemented by components, that are built using code.
Software System Something that delivers functional value to its users (human or other systems).
Containers Deployable ‘block’ of code or data that provides behaviour as part of the software system.
Components Encapsulate a group of related functionality, usually hidden behind a published interface.
Code Elements built from programming language constructs, e.g. classes, interfaces, functions,
The C4 model does not explicitly identify different architectural views, but views are implicit in the typesof diagrams produced to describe an architecture.

1Though evidence suggests that an ability to read and reason about code is necessary to learn how to program well [1] [2].
1

Figure 1: Levels within the C4 model (figure 2.1 from [3]).
The static structural view of software architecture is described through four levels of abstraction. Eachlevel providing detail about parts of the previous level.

Context How the software system fits into the broader context around it.
Containers How the containers are connected to deliver system functionality.
Components How the components are structured to implement a container’s behaviour.
Code How the code is structured to implement a component.

The behavioural view is described via a dynamic diagram that describes how containers and compo-nents interact to deliver system features.The infrastructure view is described by a deployment diagram that describes how executable containers,software systems, and other infrastructure services are deployed on computing platforms to instantiatethe system.
3 Sahara eCommerce Example
Sahara2 eCommerce is an ambitious company who’s prime business unit is an on-line store selling a widerange of products. Sahara provides both web and mobile applications to deliver the shopping experienceto customers.
3.1 Architecturally Significant Requirements
Architecturally significant requirements (ASR) are functional or non-functional requirements, or constraintsor principles, which influence the design of the system architecture. The structure of a software architecture

2Yes, that is intentionally a dry joke.
2

has to be designed to ensure that the ASRs can be delivered.Not all requirements for a system will be architecturally significant, but those that are need to be iden-tified. Once ASRs are identified, an architecture needs to be designed to deliver them. This may requiresome research, and experimentation with prototypes, to determine which options are appropriate. Testsshould be designed to verify that the architecture is delivering the ASRs. Ideally, these should be part of anautomated test suite. This may not be possible for all tests. Regardless, the ASR tests should be executedfrequently during development to provide assurance that the system will deliver the ASRs.Inevitably, some ASRs will be discovered later in the project. The existing architecture will need to beevaluated to determine if it can deliver the new ASRs. If it can, new tests need to be added to the ASRtest suite to verify delivery of the new ASRs. If the architecture is no longer suitable due to the new ASRs,a major redesign needs to be done to create a new, more suitable, architecture.The architecturally significant requirements for the Sahara eCommerce system are:
• Customers can start shopping on one device and continue on another device. (e.g. Add a product totheir shopping cart while browsing on their computer when they are bored at school. Checkout theirshopping cart from their mobile phone on their way home on the bus.)
• The system must be scalable. It must cater for peaks in demand (e.g. Cyber Monday and SinglesDay). It must cater for an unknown distribution of customers accessing the on-line store throughweb or mobile applications.
• The system must be robust. The system must continue to operate if a server fails. It must be able torecover quickly from sub-system failures.
• The system must have high availability. Target availability is “four nines”3 up time.

The following sections will describe the physical and software architecture for this system, and demon-strate how it delivers these ASRs.
3.2 System Context
The system context provides the ‘big picture’ perspective of the software system. It describes the key pur-pose of the system, who uses it, and with which other systems it interacts. The context diagram is usuallya simple block diagram. The software system being designed typically sits in the centre of the diagramsurrounded by users and other systems. The intent is to set the context for thinking about the softwaresystem’s architecture. It can also be used to communicate basic structural ideas to non-technical stake-holders. Figure 2 is a context diagram for the Sahara eCommerce system. The overall eCommerce systemis delivered through two interacting software systems, the on-line store and the data mining service.

Figure 2: Context diagram for the Saraha eCommerce on-line store.
3A number of nines (e.g. four nines) is a common way to measure availability. It represents the percentage of time thesystem is “up”. Four nines means the system is available 99.99% of the time, or it is not available for less than one hour per year.

3

Figure 3 is the key to help interpret the context diagram. A key is important for C4 diagrams, as they havea fairly informal syntax and specification.

Figure 3: Context diagram key.
The context diagram situates the on-line store software system in the environment in which it will beused. There are customers who shop at the on-line store, which is part of Sahara eCommerce’s softwareecosystem. The on-line store uses a data mining service that is also implemented by the company. Thetwo key relationships between the on-line store and the data mining service are that the on-line storesends customer browsing data to the service, and that the on-line store requests the data mining serviceto recommend products for a customer.In C4, arrows are used to indicate the main direction of the relationship, not the flow of data. So, in thisexample, the arrow points from the on-line store to the data mining service as it is the store that managesthe communication.
3.3 Containers
Container diagrams provide an overview of the software architecture. They describe the main structure ofthe software system and the technologies selected to implement these aspects of the system. Containersare ‘blocks’ of code that can be independently deployed and executed. Examples of containers are web ormobile applications, databases, message buses, It is important to note that containers may be deployedon the same computing infrastructure or on different devices.Container diagrams focus on the connections between containers and, to an extent, how they com-municate. They do not explicitly show computing infrastructure. Decisions about how containers are con-nected and communicate have major implications for how the components and code will be designed anddeployed. Figure 4 is a container diagram for the on-line store. For simplicity, containers managing loadbalancing and fail-over are not shown in this example.To provide a link to the context diagram, a container diagram usually shows which containers communi-cate with which external elements. The text inside the square brackets in a container, and on a relationship,indicates the technology used to implement that container or relationship.Customers access the on-line store through either web or mobile applications. The Web Applicationand Interactive Web Pages containers indicate that the web application’s behaviour is delivered by twodifferent specialised containers. The Web Application container indicates that it runs in a J2EE4 server.This implements the presentation layer of the web application in Java. It handles browser requests fromcustomers, using the HTTPS protocol over the Internet.The Interactive Web Pages are JSF5 pages and JavaScript code that implement more sophisticateduser interactions on web pages. These run within the users’ browsers.TheWeb Application container uses RMI6 to invoke functional behaviour in theApplication Backend

4Jakarta Enterprise Edition [https://jakarta.ee/]5Jakarta Faces [https://jakarta.ee/specifications/faces/4.0/]6Remote Method Invocation [https://www.oracle.com/java/technologies/jpl1-remote-method-invocation.
html

4

https://jakarta.ee/
https://jakarta.ee/specifications/faces/4.0/
https://www.oracle.com/java/technologies/jpl1-remote-method-invocation.html
https://jakarta.ee/
https://jakarta.ee/specifications/faces/4.0/
https://www.oracle.com/java/technologies/jpl1-remote-method-invocation.html
https://www.oracle.com/java/technologies/jpl1-remote-method-invocation.html

Figure 4: Container diagram for the on-line store software system.
container. It provides the shared logic of the on-line store. This supports implementing the functional re-quirement that a customer can start shopping on one device and continue on another.The mobile application communicates with the application backend via a REST API7. The applicationbackend uses JPA8 to manage persistent data in the application’s database. The application backend usesRMI to communicate with the data mining service, sending customer browsing and search history to beused for data mining and receiving product suggestions to present to customers.While a container diagram does not explicitly show computing infrastructure, some of it can be impliedby the types of containers in the diagram. Clearly, the mobile app and the code running in the interactiveweb pages have to be separate computing platforms to the rest of the on-line store’s software system.Colours and icons can be used to provide further information in the diagrams. The diagram key infigure 5 explains the purpose of each icon and colour.The data mining service software system (figure 6) has three main containers.

Data Mining Interface provides the interface used to interact with the data mining service. It ac-cepts data to store for future data mining. It returns suggestions based on requests from external systems,such as the on-line store.
Data Mining Process performs the data mining logic.
Data Warehouse stores the data and provides an SQL-based query system to manipulate the data.The data mining interface and process containers use JDBC9 to work with the data in the data warehouse.

7https://www.ibm.com/topics/rest-apis8Jakarta Persistence API [https://jakarta.ee/specifications/persistence/3.1/]9Java DataBase Connectivity [https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html]

5

https://www.ibm.com/topics/rest-apis
https://jakarta.ee/specifications/persistence/3.1/
https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html
https://www.ibm.com/topics/rest-apis
https://jakarta.ee/specifications/persistence/3.1/
https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html

Figure 5: Container diagram key.

Figure 6: Container diagram for the data mining service software system.
3.4 Components
Component diagrams describe the major parts of containers and how they are connected. Componentsshould describe their important responsibilities and the technology used to implement them (e.g. usingReact to implement a web frontend component). Like a container diagram, a component diagram caninclude elements from higher level diagrams to provide context of how the components interact withelements outside of the container.In figure 7, the application backend is divided into five main components. The Shopping Cart com-ponent provides the backend logic of implementing a shopping cart. This includes storing the state of thecart in the application database so that it is available in a later shopping session. The Products componentprovides information about products in the application database. The Customers component retrievescustomer credentials from the application database. The Orders component stores finalised orders in theapplication database.

6

Figure 7: Component diagram for the application backend container.
The web application interacts with the Customers, Shopping Cart and Products components via RMI.They would provide interfaces for this interaction. Shopping Cartuses theProducts, Orders andCustomerscomponents to deliver its behaviour. Together they deliver the logical behaviour of providing informationabout products, tracking what is in the shopping cart, and placing orders.The application backend is implemented in Java and uses JPA Entities10 to manage persistent data inthe application database.The mobile applications use a REST API to communicate with the application backend. An example ofthis is shown by the Shopping Cart Controller component which uses the Shopping Cart to deliverthat behaviour to the mobile applications. Other controllers implementing REST APIs are not shown toreduce the complexity of the diagram.Figure 8, shows the icons and colours used to represent different elements in the component diagrams.

Figure 8: Component diagram key.
10https://jakarta.ee/specifications/persistence/3.1/jakarta-persistence-spec-3.1.html#entities

7

https://jakarta.ee/specifications/persistence/3.1/jakarta-persistence-spec-3.1.html#entities
https://jakarta.ee/specifications/persistence/3.1/jakarta-persistence-spec-3.1.html#entities

Figure 9 shows the components that provide the frontend behaviour, in the web application, of browsingfor products, adding them to the shopping cart, and purchasing them.

Figure 9: Component diagram for the web application container.
Figure 10, shows that the Product Animator component is downloaded from the web application to thecustomer’s browser and that it is implemented in JavaScript. This component provides the code that allowscustomers to interact with 3D views of products.

Figure 10: Component diagram for the interactive web pages container.
To keep the example manageable, only the components related to implementing the shopping cart areshown at this level of detail.
3.4.1 Component Diagram Detail

There may be some components that are important parts of the software design, but which may notnecessarily be included in component diagrams. For example, a logging component is an important partof many software systems. But, due to the nature of a logging component, most other components willuse it. Adding it to component diagrams will usually clutter the diagrams without adding much usefulinformation. Usually it is better to add a note indicating which logging component is used in the system.If it is helpful to indicate which components use the logging component, it may be better to colour codethese components or use an icon to represent that they use the logging component.

8

3.5 Code
Code-level diagrams describe the structure of the code that implements a component. The intent is toprovide a visual representation of the important aspects of the code’s structure.C4 does not provide a code level diagram. It suggests using diagrams appropriate to your programmingparadigm. Assuming the implementation is in an object-oriented language, a UML diagrams11 class diagramwould be an appropriate way to model the design of the code.Figure 11 is a UML class diagram visualising the static structure of the classes that implement theShopping
Cart component. Usually only architecturally significant operations and attributes are shown. (e.g. Oper-ations and attributes needed to understand relationships and behaviour.) Rarely do you need to provideall the detail that replicates the source code. (The source code could be considered a fifth level to the C4model.) And for simplicity in this diagram, only the classes and interfaces related to adding items to ashopping cart and checking out are shown.

Figure 11: Example static structure for part of the shopping cart component.
The CartManager and Checkout control classes implement, respectively, the ManageCart and Cart-
Checkout interfaces. These two classes implement the Façade design pattern and manage how addingproducts to a shopping cart and checking out are delivered by the classes in this package. Going back tothe application backend and web application component diagrams (figures 7 and 9), when a customer,via their web browser, selects to add a product to their shopping cart, the Product Browsing compo-nent’s logic uses the ManageCart interface’s additem operation to send a message to the Shopping Cartcomponent.In the implementation of theShopping Cart component, theCartManager class uses theEntityManagerto load the product details and the customer’s shopping cart from the application database. TheEntityManagercreates the Product and Cart entity objects, and CartManager adds the product to the cart. Once this isdone the EntityManager is used to save the updated cart data into the database.When a customer wants to checkout the products in their shopping cart, the Shopping Cart Viewcomponent uses the CartCheckout interface’s products operation to get a list of the product details tobe displayed in the shopping cart. The ProductDetails class is a Java bean that is used to pass the dataabout each product to the Shopping Cart View. Once a customer decides to buy the products in their

11Unified Modeling Language [https://www.uml.org/]
9

https://www.uml.org/
https://www.uml.org/

shopping cart, the Shopping Cart View sends the checkOut message to the Shopping Cart. Checkoutuses the PaymentGateway interface to process the payment.
3.5.1 Class Diagram Notation

Formally in UML, rectangles represent classifiers. A class is one type of classifier. In a class diagram, a rect-angle represents a class, unless a keyword is used to indicate that it is a different type of classifier. Classifierrectangles have three compartments. The top compartment contains its name and optionally includes akeyword, stereotypes and properties for the classifier. The middle compartment contains attributes. Thebottom compartment contains operations.Solid lines represent associations, which may optionally have an arrow indicating the direction of therelationship. An association indicates a structural relationship between classes. Typically this means thatthe target of an association will be an implicit attribute of the class. The end of an association can use
multiplicity to indicate the number of objects of the class that may take part in the relationship.A diamond on the end of an association indicates an aggregate relationship. The diamond is on the endthat is the aggregate, and the other end is the part. The diamond may be filled or not. A filled diamondrepresents composition. This indicates ‘ownership’, where the aggregate controls the lifespan of the part.A hollow diamond, as in the relationship between Order and Product, indicates aggregation. This is aweaker relationship than composition, as the aggregate does not control the lifespan of the part, but it stillindicates a strong relationship between the classes.A dashed line with an open arrowhead (e.g. from CartManager to Product) indicates that one classifier
depends on (or uses) another. This is meant to indicate a transient relationship.A dashed lines with a closed and hollow arrowhead (e.g. from Checkout to CartCheckout) indicatesthat the class is realising (or implementing) that interface.

Italicised names indicate an abstract classifier. Keywords are used to indicate the type of a classifier.In this example, the keyword «interface» indicates that the classifier is an interface. Stereotypes use thesame notation as keywords. Three standard stereotypes for classes in UML are:
«entity» Represents a concept (entity) from the problem domain.
«control» Provides logical behaviour from the solution domain.
«boundary» Communicates with something outside of the system. (Not shown in diagram.)An additional stereotype «bean» is used to indicate that the class is a Java bean.

3.6 Dynamic
Dynamic diagrams in C4 show how different parts of the model collaborate to deliver architecturally sig-nificant requirements. Normally dynamic diagrams are used to describe behaviour that is not clear fromother diagrams and descriptions. This can include complex interactions between modules, complex con-currency, real-time constraints, or latency constraints.For example, when Boeing was upgrading the combat control system of the F-11112 for the AustralianAirforce, they designed a software architecture that used CORBA13 as middleware. The implementation ofthe middleware caused a fixed delay in sending messages between components. From an architecturaldesign perspective, it was important to document this delay and enforce a maximum delay on the timetaken to complete any process. This type of constraint can be documented with a dynamic diagram andsupporting documentation.Figure 12 provides an overview of how the Product Browsing component in the Web Applicationcontainer collaborates with the Shopping Cart component in the Application Backend container to

12https://www.youtube.com/watch?v=xUcpZJE050s13Common Object Request Broker Architecture [https://www.ibm.com/docs/en/integration-bus/9.0.0?topic=
corba-common-object-request-broker-architecture]

10

https://www.youtube.com/watch?v=xUcpZJE050s
https://www.ibm.com/docs/en/integration-bus/9.0.0?topic=corba-common-object-request-broker-architecture
https://www.youtube.com/watch?v=xUcpZJE050s
https://www.ibm.com/docs/en/integration-bus/9.0.0?topic=corba-common-object-request-broker-architecture
https://www.ibm.com/docs/en/integration-bus/9.0.0?topic=corba-common-object-request-broker-architecture

deliver the behaviour of a customer adding a product to their shopping cart. It also shows the communi-cation between the Shopping Cart component and the application database.

Figure 12: Dynamic diagram for adding a product to the customer’s shopping cart.
A dynamic diagram should provide enough information to clarify any requirements or constraints on thedesign, but should not be so restrictive as to limit valid implementation choices.UML provides two types of interaction diagrams that are similar to dynamic diagrams. A communica-tion diagram is very similar to a dynamic diagram. A sequence diagram focusses on the time or orderedsequence of events that occur in a scenario. In documenting a software architecture, there may be sometypes of constraints that are more clearly expressed through a sequence diagram.
3.6.1 Detailed Behaviour

Figure 13: Example detailed sequence diagram showing the implementation of customer adding a productto their shopping cart.
Figure 13 is a detailed sequence showing how the class model in figure 11 implements the behaviour ofa customer adding a product to their shopping cart. This is a more detailed, or code-level, view of the

11

scenario of adding a product to a customer’s shopping cart shown in figure 12. You would only providedetailed behavioural diagrams to describe architecturally important details of the detailed design.The scenario starts with the JSF session-scoped bean WebCart receiving the updateCartmessage fromthe browser. WebCart retrieves the product id and uses the ManageCart interface to send it, along withthe cart id, to the Shopping Cart component in the application backend. The ManageCart interface isimplemented by the CartManager class in the Shopping Cart component.The CartManager uses the JPA EntityManager to retrieve the cart and product entities from the appli-cation database. Once the product is added to the cart, the EntityManager saves the updated cart detailsto the database. Upon successfully saving the updated cart, the CartManager notifies the WebCart objectin the Product Browsing component in the web application.
3.6.2 Sequence Diagram Notation

Sequence diagrams are read from the top down. The top of the diagram represents the start of the sce-nario, and execution time progresses down the diagram. The bottom of the diagram is the end of thescenario. Duration constraints can be placed between messages indicating information like the maximumallowed time between the start and end of a message.Rectangles with dashed lines descending from them are lifelines. They represent an instance of a par-ticipant in the scenario being described. The name at the top of a lifeline describes the participant. Infigure 13, these are objects of classes from the detailed design. The class diagram in figure 11 shows theclasses for the detailed design of the Shopping Cart component used in this scenario.The horizontal lines are messages sent between participants. Messages use hierarchical numbers toindicate both nesting and sequence of messages. Message 1.1 is sent by message 1. Message 1.1.1 comesbefore message 1.1.2. Message 1 in figure 13 is a found message, meaning that the sender of the message isnot shown in the diagram.A closed arrowhead on a message (e.g. message 1.1) indicates that it is a synchronous message. Anopen arrowhead on a message (e.g. message 1.2) indicates that it is an asynchronous message. In figure 13,stereotypes have been placed on messages between containers (i.e. messages 1.2 and 1.2.5) to indicatethe protocol used to send the message.The vertical rectangles sitting on top of lifelines are execution specifications. They indicate when aninstance is executing logic. For example, after the asynchronous message 1.2 is sent to the CartManagerobject, message 1 finishes executing. When the synchronous message 1.2.1 is sent to the EntityManager,message 1.2 is still active as it is waiting for message 1.2.1 to finish before message 1.2 can continue to thenext part of the logic.The «create» stereotype indicates when an instance is created. When an instance is created, its lifelinestarts at the level of the sequence diagram that indicates the point in time when it is created. When aninstance is destroyed, its lifeline finishes, with a large X. Lifelines that are at the top of the diagram indicateinstances that existed before the start of the scenario. Lifelines that reach the bottom of the diagramindicate instances that still exist after the end of the scenario.System boundary boxes in figure 13 indicate the components being implemented by the objects. The
Product Browsing component is shaded in pink. The Shopping Cart component is white.
3.7 Deployment
While not one of the “four C’s”, deployment diagrams are important for most systems. They describe thephysical architecture or infrastructure on which the system will be deployed. It shows which containerswill run on which computing platforms (deployment nodes). Deployment nodes can be nested, as shownin figure 14. They may also contain infrastructure nodes or software system instances14.

14https://docs.structurizr.com/dsl/language#deploymentnode

12

https://docs.structurizr.com/dsl/language#deploymentnode

Figure 14: Deployment diagram for the Sahara eCommerce System.
Figure 14 is an example C4 deployment diagram for the Sahara eCommerce system. It shows that theon-line store software system runs in Sahara’s data centre. The data mining service runs on Oracle’s cloudinfrastructure. This approach of a system that uses cloud services for some of its implementation is calleda hybrid cloud application. There are also the apps running on mobile devices and the code running in thecustomer’s browser.A software environment is embedded in the hardware environment on which it runs. The web appli-cation runs in an Apache TomEE15 J2EE server, which is running on a Ubuntu server. The “x4”16 inside the

15https://tomee.apache.org/16It is an unfortunate constraint of C4 that this must be an explicit number. That is fine for a system hosted on an organisation’sown infrastructure, as they need to know how many servers need to be provisioned. If you are running virtual servers, this is lessinformative and does not clearly show capability of spinning up servers as needed, or spinning them down when not needed.

13

https://tomee.apache.org/
https://tomee.apache.org/

web server deployment node indicates that there will be four of these servers to share the load. The ap-plication backend runs on eight Ubuntu servers, providing the core business logic shared by the web andmobile applications.The application database runs in MySQL on its own Ubuntu server. The application database is repli-cated on another server, allowing for failover. The application backend can continue to operate if the pri-mary application database fails.The application backend communicates with the data mining service through an API published by thedata mining interface running in a virtual machine on Oracle’s cloud infrastructure. The data mining serviceuses Oracle’s machine learning services to perform the data mining. Oracle’s cloud-based data warehouseinfrastructure is used to hold all the data.Figure 15 is the key describing the icons and colours used in the deployment diagram.

Figure 15: Deployment diagram key.

3.8 Delivering Architecturally Significant Requirements
In section 3.1, four ASRs were identified for the Sahara eCommerce system. These were the abililty tocontinue shopping on different devices, scalability, robustness and availability.Implementing shared logic on an application server, as shown in figure 14, enables the web and mobileapplications to share common logic and state. This delivers the functionality of allowing a customer tostart shopping on one device and to continue on another device. It also minimises duplication of logic, asit is shared by the frontend applications.Using separate computing infrastructure for the web server, application server, application database,and data mining service, as shown in figure 14, provides more options to deliver scalability, robustnessand availability. For scalability and performance, each computing environment can be optimised for theservices it delivers. It also means that new infrastructure can be deployed to target specific bottlenecks.The system follows the stateless architecture pattern17. The web and mobile applications do not store any

17https://www.redhat.com/en/topics/cloud-native-apps/stateful-vs-stateless

14

https://www.redhat.com/en/topics/cloud-native-apps/stateful-vs-stateless
https://www.redhat.com/en/topics/cloud-native-apps/stateful-vs-stateless

application state (e.g. products currently stored in the shopping cart). Every time the customer performsa transaction (e.g. viewing product details or adding a product to their shopping cart), the web or mobileapplication sends a message to the application server to perform the action. The application server thensaves or loads data to or from the application database.This means that web and mobile applications can send messages to a different application server foreach request. This facilitates scalability, robustness and availability. A new application server can be startedto cater for increasing system load, or to replace a failed server. The stateless nature of the applicationserver logic means that no data will be lost if a server fails, or if a frontend application accesses a differentapplication server in the middle of a customer’s shopping experience.Having multiple application servers, web servers, and multiple application databases, means that ifone server fails its load can be picked up by other servers. Automating the process of starting or restartingservers improves robustness and availability. Running the data mining service on Oracle’s cloud infrastruc-ture means that we can rely on their management of services to guarantee our required level of scalabilityand availability.One challenge of a stateless architecture is providing a replicated database that contains up-to-datecopies of the system’s state. We will look at this issue later in the course.By designing the architecture as a set of components running on different servers, it is also easier tomigrate the application to cloud-based infrastructure. Figure 14 does not constrain the system to run onphysical hardware hosted by Sahara eCommerce. Any of the nodes could be provisioned by a serviceoffered by a cloud provider.
4 Tools
We will use C4 as our standard notation in this course, supplemented with UML diagrams when their levelof detail is appropriate. C4 is popular because it has a basic structure, but the rules are intentionally looseto make it easy to adopt. You should use tools to aid the creation of your diagrams and documentation.The important thing is that you should use a modelling tool, not a drawing tool. A few drawing toolsprovide C4 templates. The issue with drawing tools is that they do not know what the elements of thediagram mean. If a container name is changed in a drawing tool, you will need to manually change itwherever it is referenced in other diagrams. A modelling tool will track the information that describes themodel, so that a change to a model element in one place, will be replicated wherever that element appearsin other diagrams.There are a few tools that support C4. Some to consider are Structurizr18, C4-PlantUML19, Archi20,IcePanel21, or Gaphor22.
Structurizr was developed by Simon Brown as a tool to support generating C4 diagrams from textualdescriptions. UQ students may register for free access to the paid version of the Structurizr CloudService23. You must use your student.uq.edu.au or uq.net.au email address when you registerto get free access. Structurizr is an open source tool24. You can use a domain specific language25 todescribe a C4 model, or you can embed the details in Java26 code.
C4-PlantUML extends the UML modelling tool PlantUML to support C4.

18https://www.structurizr.com/19https://github.com/plantuml-stdlib/C4-PlantUML20https://www.archimatetool.com/21https://icepanel.io/22https://gaphor.org/23https://structurizr.com/help/academic24https://github.com/structurizr/25https://docs.structurizr.com/dsl/language26https://docs.structurizr.com/java

15

https://www.structurizr.com/
https://github.com/plantuml-stdlib/C4-PlantUML
https://www.archimatetool.com/
https://icepanel.io/
https://gaphor.org/
https://structurizr.com/help/academic
https://structurizr.com/help/academic
https://github.com/structurizr/
https://docs.structurizr.com/dsl/language
https://docs.structurizr.com/java
https://www.structurizr.com/
https://github.com/plantuml-stdlib/C4-PlantUML
https://www.archimatetool.com/
https://icepanel.io/
https://gaphor.org/
https://structurizr.com/help/academic
https://github.com/structurizr/
https://docs.structurizr.com/dsl/language
https://docs.structurizr.com/java

Archi is an open source visual modelling tool that supports C427 and ArchiMate models.
IcePanel is a cloud-based visual modelling tool that supports C4. There is a limited free license for thetool.
Gaphor is an open source visual modelling tool that supports UML and C4.
4.1 Textual vs Visual Modelling
The tools described above include both graphical and textual modelling tools. Graphical tools, such asArchi and Gaphor, allow you to create models by drawing them. This approach is often preferred by visuallyoriented learners28. Text-based tools, such as C4-PlantUML and Structurizr, allow you to create modelsby providing a textual description of the model. This approach is often preferred by read/write orientedlearners29.Despite preferences, there are situations where there are advantages of using a text-based modellingtool. Being text, the model can be stored and versioned in a version control system (e.g. git). For teamprojects, it is much easier for everyone to edit the model and ensure that you do not destroy other teammembers’ work. It is also possible to build a tool pipeline that will generate diagrams and embed them intothe project documentation.Text-based modelling tools, such as Structurizr or C4-PlantUML, use a domain specific language30
(DSL) to describe the model. These tools require that you learn the syntax and semantics of the DSL. Thefollowing sources of information will help you learn the Structurizr DSL:• language reference manual31,• language examples32,• on-line editable examples33, and• off-line tool34.
4.2 Example Diagrams
You may find the Sahara eCommerce C4 model useful as an example of a number of features of theStructurizr DSL. You are able to download the C4 model of the Sahara eCommerce example, from thecourse website. The C4 model35 was created using the Structurizr36 DSL.
5 Software Architecture in Practice Views
The seminal architecture book, Software Architecture in Practice [4], categorises architectural views intothree groups. These three groups each answer different questions about the architecture, specifically:
Module Views How implementation components of a system are structured and depended upon.
Component-and-connector Views How individual components communicate with each other.
Allocation Views How the components are allocated to personnel, file stores, hardware, etc.

27https://www.archimatetool.com/blog/2020/04/18/c4-model-architecture-viewpoint-and-archi-4-7/28https://vark-learn.com/strategies/visual-strategies/29https://vark-learn.com/strategies/readwrite-strategies/30https://opensource.com/article/20/2/domain-specific-languages31https://docs.structurizr.com/dsl/language32https://docs.structurizr.com/dsl/cookbook/33https://structurizr.com/dsl34https://github.com/structurizr/cli35https://csse6400.uqcloud.net/resources/c4_model.zip36https://www.structurizr.com/

16

https://www.archimatetool.com/blog/2020/04/18/c4-model-architecture-viewpoint-and-archi-4-7/
https://vark-learn.com/strategies/visual-strategies/
https://vark-learn.com/strategies/visual-strategies/
https://vark-learn.com/strategies/readwrite-strategies/
https://vark-learn.com/strategies/readwrite-strategies/
https://opensource.com/article/20/2/domain-specific-languages
https://docs.structurizr.com/dsl/language
https://docs.structurizr.com/dsl/cookbook/
https://structurizr.com/dsl
https://github.com/structurizr/cli
https://csse6400.uqcloud.net/resources/c4_model.zip
https://www.structurizr.com/
https://www.archimatetool.com/blog/2020/04/18/c4-model-architecture-viewpoint-and-archi-4-7/
https://vark-learn.com/strategies/visual-strategies/
https://vark-learn.com/strategies/readwrite-strategies/
https://opensource.com/article/20/2/domain-specific-languages
https://docs.structurizr.com/dsl/language
https://docs.structurizr.com/dsl/cookbook/
https://structurizr.com/dsl
https://github.com/structurizr/cli
https://csse6400.uqcloud.net/resources/c4_model.zip
https://www.structurizr.com/

5.1 Module Views
Module views are composed of modules, which are static units of functionality such as classes, functions,packages, or whole programs. The defining characteristic of a module is that it represents software re-sponsible for some well-defined functionality. For example, a class which converts JSON to XML wouldbe considered a module, as would a function which performs the same task.The primary function of module views is to communicate the dependencies of a module. Rarely doessoftware work completely in isolation, often it is constructed with implicit or explicit dependencies. Amodule which converts JSON to XML might depend upon a module which parses JSON and a modulewhich can format XML. Module views make these dependencies explicit.Module views focus on the developer’s perspective of how the software is implemented, rather thanhow it manifests itself when deployed in a computing environment.

 import json
 import xml

 class JSONtoXML:
 def load(self, json_file):
 with open(json_file) as f:
 data = json.load(f)
 self.data = self.convert(data)

 def export(self, xml_file):
 xml.write(xml_file, data)

 def convert(self, data: JSON) -> XML:
 ...

(a) Pseudo-code to convert JSON to XML
Python Package: json Python Package: xml

Python Class: JSONtoXML
(b) An example of a module view which illustrates the dependencies of the JSONtoXML class

Figure 16: A simple module view of a JSON to XML program.

5.2 Component-and-Connector Views
Component-and-connector views focus on the structures that deliver the runtime, or dynamic behaviourof a system. Components are units which perform some computation or operation at runtime. These com-ponents could overlap with the modules of a module view but are often at a higher level of abstraction. Thefocus of component-and-connector views is how these components communicate at runtime. Runtimecommunication is the connector of components. For example, a service which registers users to a websitemight have new registrations communicated via a REST request. The service may then communicate thenew user information to a database via SQL queries.

17

When we look at software architecture, component-and-connector views are the most commonly usedviews. They are common because they contain runtime information which is not easily automatically ex-tracted. Module views can be generated after the fact, i.e. it is easy enough for a project to generate a UMLclass diagram. (Simple tools will create an unreadably complex class diagram. Tagging important informa-tion in the source code, or manually removing small details is required to end up with readable diagrams.)Component-and-connector views are often maintained manually by architects and developers.
5.3 Allocation Views
According to Bass et al, allocation views map the software’s structures to the system’s non-software struc-tures [4]. They include concepts such as who is developing which software elements, where are sourcefiles stored for different activities such as development and testing, and where are software elements ex-ecuted. The first two points are important for project management and build management. The last pointof how the software is executed on different processing nodes is important for architectural design. Thisis sometimes called the deployment structure or the software system’s physical architecture.Understanding the physical architecture (simplistically the hardware37 on which the software is exe-cuted) is important when designing the software’s logical architecture. Component-and-connector viewsdescribe the software’s logical architecture. This design of the logical architecture must contain compo-nents that can be allocated appropriately to processing nodes, and these nodes must have communicationlinks that enable the components to interact.
6 4+1 Views
Philippe Kruchten was one of the earliest to advocate the idea of using views to design and documentsoftware architectures. In “4+1 View Model of Software Architecture” [5] he describes five different views.These are logical, process, development, physical, and scenario views, which are summarised below.
Logical How functionality is implemented, using class and state diagrams.
Process Runtime behaviour, including concurrency, distribution, performance and scalability. Sequence,communication and activity diagrams are used to describe this view.
Development The software structure from a developer’s perspective, using package and component di-agrams. This is also known as the implementation view.
Physical The hardware environment and deployment of software components. This is also known as thedeployment view.
Scenario The key usage scenarios that demonstrate how the architecture delivers the functional require-ments. This is the ‘+1’ view as it is used to validate the software architecture. This is also known as theuse case view, as high-level use case diagrams are used to outline the key use cases and actors. Ahigh-level use case diagram provides contextual information, similar to the intent of the C4 contextdiagram. A use case diagram allows more information to be conveyed and if it is supported withactivity diagrams, it provides a significant amount of information that can be used to validate thearchitecture.
The experience which led to the development the 4+1 View Model was developing the air traffic controlmanagement system for Canada. The system provides an integrated air traffic control system for the en-tire Canadian airspace. This airspace is about double the size of the Australian airspace and borders thetwo busiest airspaces in the world. The project’s architecture was designed by a team of three people led

37Whether it is virtualised or physical hardware
18

by Philippe. Development was done by a team of 2500 developers from two large consulting compa-nies. The project was delivered on-time and on-budget, with three incremental releases in less than threeyears38. This project also developed many of the ideas that led to the Rational Unified Process [7].
7 Conclusion
Architectural views help developers understand different dimensions and details of a complex softwarearchitecture. They are useful both during design and as documentation. During design, views help you tofocus on a particular aspect of the software architecture and ensure that it will allow the system to deliverall of its requirements. As documentation, views help developers to understand how different aspects ofthe architecture are intended to behave.We have intentionally looked at a few different approaches to helping you describe a software archi-tecture. You should be conversant with multiple different approaches. The hallmark of a professional is toknow when to select a particular approach.If you compare the “4+1 View Model” [5] with the views described in Software Architecture in Practice(SAP) [4], you will see that there are obvious similarities but also some differences. The logical, devel-opment and process views from the 4+1 view model map closely to the module and component-and-connector (C&C) views from SAP. The physical view corresponds to the allocation view. The 4+1 view modelalso includes the scenario view, which does not correspond directly to the SAP views.The scenario view is used to demonstrate how the architecture described in the other views deliversthe core functional requirements. It is used while designing a software architecture to validate that it issuitable for the system.Kruchten intentionally separated the process view from the logical and development views, rather thanbundling them together like the C&C view in SAP. This is because for some systems the dynamic details,which are described by the process view, can be complex and important. Dealing with issues such ascomplex concurrency, real-time interactions or latency, can often be more easily considered by having aseparate view for them.Kruchten’s experience with Canada’s integrated, nation-wide, air traffic control system was such a case.Data from radar systems and aircraft transponders have to be processed and reported to air traffic con-trollers in near real-time. With thousands of input sources and hundreds of controller stations, understand-ing concurrency issues is critical. Tracking aircraft from one control space to another means that commu-nication latency is important. Each control space has its own hardware and is separated from neighbouringspaces by hundreds or thousands of kilometres.The C4 model does not explicitly include the concept of views. Like SAP, it emphasises the structure ofthe software architecture, adding a hierarchical lens in its structural view. These diagrams map to the 4+1logical and development views and the SAP module and C&C views. Its behavioural view maps to aspectsof the 4+1 process view. Its infrastructure view maps to the 4+1 physical view and the SAP allocation view.As a software architect you need to choose which views provide meaningful information about yoursoftware system. The graphical notation used to describe a view is only one part of the view (though animportant part). Ensure you provide enough supporting information so others will know how to work withyour architecture and why you made the choices that you did.
References
[1] R. Lister, C. Fidge, and D. Teague, “Further evidence of a relationship between explaining, tracing andwriting skills in introductory programming,” in Proceedings of the 14th Annual ACM SIGCSE Conference on

38Contrast this to the United States Federal Aviation Administration’s Advanced Automation System project from a similarera. The original estimate was $2.5 billion and fourteen years to implement. The project was effectively cancelled after twelveyears. By then the estimate had almost tripled and the project was at least a decade behind schedule [6].
19

Innovation and Technology in Computer Science Education, ITiCSE ’09, (New York, NY, USA), p. 161–165,Association for Computing Machinery, 2009.
[2] R. Lister, “Concrete and other neo-piagetian forms of reasoning in the novice programmer,” in Proceed-

ings of the Thirteenth Australasian Computing Education Conference - Volume 114, ACE ’11, (AUS), p. 9–18,Australian Computer Society, Inc., 2011.
[3] S. Brown, The C4 Model for Visualising Software Architecture. Leanpub, Feb 2023. https://leanpub.

com/visualising-software-architecture.
[4] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. Addison-Wesley, 4th ed., August2021.
[5] P. Kruchten, “Architectural blueprints — the ‘4+1’ view model of software architecture,” IEEE Soft-

ware, vol. 12, no. 6, pp. 42–50, 1995. https://www.cs.ubc.ca/~gregor/teaching/papers/4+
1view-architecture.pdf.

[6] T. Hilburn, A. Squires, H. Davidz, and R. Turner, “Federal aviation administration (faa) advanced au-tomation system (aas).” https://www.sebokwiki.org/wiki/Federal_Aviation_Administration_
(FAA)_Advanced_Automation_System_(AAS), October 2021. Example from the Guide to the Systems
Engineering Body of Knowledge https://www.sebokwiki.org/w/index.php?title=Guide_to_the_
Systems_Engineering_Body_of_Knowledge_(SEBoK)&oldid=63222.

[7] P. Kruchten, The Rational Unified Process: An Introduction. Addison-Wesley Professional, 2004.

20

https://leanpub.com/visualising-software-architecture
https://leanpub.com/visualising-software-architecture
https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
https://www.sebokwiki.org/wiki/Federal_Aviation_Administration_(FAA)_Advanced_Automation_System_(AAS)
https://www.sebokwiki.org/wiki/Federal_Aviation_Administration_(FAA)_Advanced_Automation_System_(AAS)
https://www.sebokwiki.org/w/index.php?title=Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)&oldid=63222
https://www.sebokwiki.org/w/index.php?title=Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)&oldid=63222

	Architectural Views
	Introduction
	C4 Model
	Sahara eCommerce Example
	Architecturally Significant Requirements
	System Context
	Containers
	Components
	Component Diagram Detail

	Code
	Class Diagram Notation

	Dynamic
	Detailed Behaviour
	Sequence Diagram Notation

	Deployment
	Delivering Architecturally Significant Requirements

	Tools
	Textual vs Visual Modelling
	Example Diagrams

	Software Architecture in Practice Views
	Module Views
	Component-and-Connector Views
	Allocation Views

	4+1 Views
	Conclusion

