
Last Updated on 2024/03/03

Web Application Programming Interface (API) Software Architecture
February 21, 2024 Brae Webb & Evan Hughes

Aside
Github Classroom links for this practical can be found on Edstem https://edstem.org/au/
courses/15375/discussion/1753712

1 This Week
This week our goal is to:

• initialise our GitHub repositories where we will be working on practical exercises; and
• build a minimal HTTP API of a todo app using the Flask framework.

2 Practicals
These practicals are designed to prepare you with the technical skills required for the scalability and cap-stone projects. We will normally spend the first section of the practicals gaining the relevant conceptualbackground for the practical. The second section will be a practical exercise where you will need to writeand run some code.This semester we will be working on the creation of a scalable and fault-tolerant todo list application.You should aim to keep up with the practicals or you will not be able to complete the projects.

1

https://edstem.org/au/courses/15375/discussion/1753712
https://edstem.org/au/courses/15375/discussion/1753712

Info
In this practical we will build a RESTful API that communicates over HTTP. It is worth noting thatwhile this is a common way to build APIs, it is far from the only way. We will briefly explore somealternatives in subsequent weeks.

3 Concepts

3.1 Networking

Application Layer
Presentation Layer

Session Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer

The above diagram shows the layers of theOSImodel. These are the layers of abstraction that comprisethe Internet Protocol Suite (or, how computers communicate over the Internet).At the transport layer, we have the Transmission Control Protocol (TCP) and User Datagram Protocol(UDP). This is a low-level protocol that you may have already used in your previous studies, this is thelevel of networking taught in CSSE2310. While it is possible to develop applications that use this protocoldirectly, it is not very practical.In this course we will be using the Hypertext Transfer Protocol (HTTP). HTTP is a higher-level protocolthat is built on top of TCP, it sits in the Application Layer of the OSI model. HTTP is the protocol that is usedto transfer web pages over the Internet.
Application Layer

Presentation Layer
Session Layer

Transport Layer
Network Layer
Data Link Layer
Physical Layer

TCP/UDP (CSSE2310)

HTTP/HTTPS (CSSE6400)

2

3.2 URLs
A Uniform Resource Locator (URL) is a string that identifies a resource on the Internet.There are three main components of a URL:
Protocol The protocol used to access the resource, e.g. http or https.
Host The host name of the server that hosts the resource, e.g. example.com or localhost.
Path The path to the resource on the server, how the server identifies the resource.

http :// example.com / hello-world
Protocol

Hostname

Path

A URL can also contain a port number, which is the port number that the server is listening on. If theport number is not specified, the default port number for the protocol is used. For example, the defaultport number for http is 80, and the default port number for https is 443.

http :// example.com : 80 / hello-world
Protocol

Hostname

Path

Port

The URL http://example.com/hello-world is equivalent to http://example.com:80/hello-world.URLs can also contain query parameters, which are key-value pairs that are used to pass information tothe server. Query parameters are separated from the path by a question mark (?). Each query parameteris separated from the next by an ampersand (&).

http :// example.com / hello-world ? key=value
Protocol

Hostname

Path

Query V ariable

3.3 HTTP
HTTP is a request-response abstraction for networking.
3.3.1 Request

The HTTP request is a message sent to the server. It contains the following information:
URL An endpoint to which the request is sent.
Method Described later.
Headers Specify type of data, e.g. JSON, HTML, etc. and other metadata about the request.
Body The optional data to send to the server.

3

3.3.2 Response

The HTTP response is a message sent from the server. It contains the following information:
Status code A number between 100 and 599 giving details about the response.
Headers Specify type of response data, e.g. JSON, HTML, etc. and other metadata about the response.
Body Content of the response.
Status Codes

200s Indicate the request was successful, 200 is the most common.
300s Redirects the requester to another location.
400s Indicates that the request was wrong, e.g. 404 meaning that the request was for something thatdoes not exist.
500s Indicates that the server had a problem fulfilling the request.
Methods

GET Queries the server for information.
POST Creates a new resource on the server.
PUT Updates an existing resource on the server.
DELETE Deletes an existing resource on the server.
3.4 JSON
JavaScript Object Notation (JSON) is a data format commonly used to pass data to an API. It is fairly succinctand communicates the important points to a human reader better than some alternative formats. Thepopularity of JSON is largely due to its compatibility with JavaScript which has taken over as the defactoweb development language. JSON is the map-esque data type in JavaScript. Detractors of JSON claim thatits main disadvantage compared to XML (an alternative data format) is that it lacks a schema. However,schemas are possible in JSON1, they are optional, just as in XML, but are used much less than in XML.

» cat csse6400.json

1 {
2 "Course Code": "CSSE6400",
3 "Course Title": "Software Architecture"
4 }

1https://json-schema.org/

4

https://json-schema.org/
https://json-schema.org/

3.5 REST
REST is an architectural style guided by a set of architectural constraints that allows us to build flexibleAPIs. In this course we do not dive too deep into the architectural style and instead opt for a more surfacelevel understanding. It is a common mistake for people to refer to REST as a HTTP based web service API,they are different. In this course we chose to embrace this mistake and often refer to a HTTP based webservice API when saying REST.An example of this type of API might be:
GET /api/v1/todo List all tasks todo
POST /api/v1/todo Create a task todo
GET /api/v1/todo/id List all details about a certain task
PUT /api/v1/todo/id Update the fields of an existing task
DELETE /api/v1/todo/id Delete a specific task
Note that the API specification does not include details of the port or hostname, as these may changefrequently.
4 GitHub
We will use GitHub to host our practical work. This is strongly encouraged as it will help you to get experi-ence with the assessment submission process. Additionally, committing your work is a good habit to getinto and will be useful for your future career.
4.1 Creating a GitHub Account
If you do not already have a GitHub account, you will need to create one. You can do this by visiting
https://github.com/join.
4.2 Joining the Course Organisation
Once you have created an account, you will need to join the course organization. If you have not yet filledout the Google Form, you will need to do so before you can join the organization. The link to the GoogleForm can be found on Blackboard.Once you have filled out the form, tell your tutor your GitHub username and they will add you to theorganisation.
4.3 Joining the GitHub Classroom
Once you have joined the organization, you will need to join the GitHub Classroom. Follow the link pro-vided by your tutor to join the classroom.
4.4 Creating a Practical Repository
Navigate to the GitHub Classroom link provided by your tutor. You should see a list of practicals, click onthe week one practical. This will create a new repository for you in the course organisation. You can nowclone this repository to your local machine or work directly in the browser with GitHub Codespaces.

5

https://github.com/join

5 TODO App

5.1 The API design
5.1.1 GET /api/v1/health

This endpoint should return a 200 status code and a JSON object with a single field, status, which shouldbe set to ok.
GET /api/v1/health HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "ok"

}

5.1.2 GET /api/v1/todos

This endpoint should return a list of all the tasks in the todo list.Optional query parameters:
• completed A boolean value indicating whether to return completed tasks or not. Valid values are
true or false.

• window An integer value indicating how many days past today’s date a task should be due by.
GET /api/v1/todos?completed=true&window=7 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json

[
{
"id": 1,
"title": "Watch CSSE6400 Lecture",
"description": "Watch the CSSE6400 lecture on ECHO360 for week 1",
"completed": true,
"deadline_at": "2023-02-27T00:00:00",
"created_at": "2023-02-20T00:00:00",
"updated_at": "2023-02-20T00:00:00"

},
...

]

6

5.1.3 GET /api/v1/todos/{id}

This endpoint should return a single item from the todo list.
GET /api/v1/todos/1 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"title": "Watch CSSE6400 Lecture",
"description": "Watch the CSSE6400 lecture on ECHO360 for week 1",
"completed": false,
"deadline_at": "2023-02-27T00:00:00",
"created_at": "2023-02-20T00:00:00",
"updated_at": "2023-02-20T00:00:00"

}

5.1.4 POST /api/v1/todos

This endpoint should create a new task in the todo list. The title field must be included in the request andall other values are optional. The created_at, updated_at cannot be set by this method.Attempting to post any other fields than title, description, completed, deadline_atwill causea 400 error to be returned.
POST /api/v1/todos HTTP/1.1
Content-Type: application/json

{
"title": "Watch CSSE6400 Lecture",
"description": "Watch the CSSE6400 lecture on ECHO360 for week 1",
"completed": false,
"deadline_at": "2023-02-27T00:00:00",

}

HTTP/1.1 201 Created
Content-Type: application/json

{
"id": 1,
"title": "Watch CSSE6400 Lecture",
"description": "Watch the CSSE6400 lecture on ECHO360 for week 1",
"completed": false,
"deadline_at": "2023-02-27T00:00:00",
"created_at": "2023-02-20T00:00:00",

7

"updated_at": "2023-02-20T00:00:00"
}

5.1.5 PUT /api/v1/todos/{id}

This endpoint should update a task in the todo list. The created_at, updated_at cannot be set by thismethod.Attempting to put any other fields than title, description, completed, deadline_at will causea 400 error to be returned.Attempting to put a task id that does not exist will cause a 404 error to be returned.
PUT /api/v1/todos/1 HTTP/1.1
Content-Type: application/json

{
"title": "Join the Richard Thomas fan club",

}

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"title": "Join the Richard Thomas fan club",
"description": "Watch the CSSE6400 lecture on ECHO360 for week 1",
"completed": false,
"deadline_at": "2023-02-27T00:00:00",
"created_at": "2023-02-20T00:00:00",
"updated_at": "2023-02-20T00:00:00"

}

5.1.6 DELETE /api/v1/todos/{id}

This endpoint should delete a task from the todo list. If the task does not exist, a 200 is returned with anempty response.
DELETE /api/v1/todos/1 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"title": "Join the Richard Thomas fan club",

8

"description": "Watch the CSSE6400 lecture on ECHO360 for week 1",
"completed": false,
"deadline_at": "2023-02-27T00:00:00",
"created_at": "2023-02-20T00:00:00",
"updated_at": "2023-02-20T00:00:00"

}

5.2 Implementation with Flask
5.2.1 Setting up your environment

The practicals will be using Python as our implementation language but the course is not restricted toPython. Feel free to implement the practicals and your assignments in any language you feel comfortablewith but be aware that help with other languages or frameworks may be limited.
Warning
If you are on Windows, we recommend using a Unix based environment, such as WSL2 or a virtualmachine running Ubuntu.
Since Python 3.12 now requires virtual environments to be used we will start by installing pipx to helpmanage the python environment, followed by poetry to manage our application dependencies.For Mac and Linux users you can install pipx via your package manager:

>> brew install pipx
>> pipx ensurepath

or
>> sudo apt update // apt or dnf depending on distro
>> sudo apt install pipx // apt or dnf depending on distro
>> pipx ensurepath

Once pipx is installed we can install poetry safely without affecting our system python environment.
>> pipx install poetry

Navigate to your cloned practical repository in a terminal and start your project by creating the Pythonenvironment using the following:
>> poetry init

This will give you a few prompts which for our purposes you can just stick with the default values. Afterthis process is completed you will have a pyproject.toml file in your repository. The pyproject.toml iswhere we will specify the libraries we need for our project.

9

» cat pyproject.toml

1 [tool.poetry]
2 name = "practical01"
3 version = "0.1.0"
4 description = ""
5 authors = ["Evan Hughes <uqehugh3@uq.edu.au>"]
6 readme = "README.md"

8 [tool.poetry.dependencies]
9 python = "^3.8"

12 [build-system]
13 requires = ["poetry-core"]
14 build-backend = "poetry.core.masonry.api"

Info
Your Python version may be different, this is fine as long as it is Python 3. For our automated testswe would like you to change the version number from the pyproject so that it is python = "3̂.8".If you are running a version of python lower than this then please consider upgrading as it is end-of-life.
Next we are going to add Flask as a dependency to our project. This library is a small web server wrapperthat will allow us to quickly build our todo application. To add a dependency to our project, we can run thefollowing command:

>> poetry add flask

You will see it has made some changes to our pyproject and a poetry.lock is created.
5.2.2 Initialising with Flask

Create a folder called todo in the root of your project and create a file called __init__.py and add thefollowing code to it:
1 from flask import Flask

3 def create_app():
4 app = Flask(__name__)
5 return app

Your repository should now look like this:
.
|-- README.md
|-- pyproject.toml

10

|-- poetry.lock
|-- todo

|-- __init__.py

We have created a basic Flask app but how do we run it? When using poetry we need to run it in thefollowing way:
>> poetry run flask --app todo run

This command runs the flask –app todo run command inside the poetry environment with ourdependencies installed.This web server is a bit boring though, let’s add an endpoint so we can see that it works. In the todofolder, create a folder called views and a file routes.py. Add the following code to routes.py:

2 from flask import Blueprint

4 api = Blueprint('api', __name__, url_prefix='/api/v1')

6 @api.route('/health')
7 def health():
8 return "ok"

The above has made an endpoint within our API under the /api/v1 prefix and we have created a
/health route below this. Now we need to register this with our flask app. In the __init__.py file, changethe contents to the following:

1 from flask import Flask

3 def create_app():
4 app = Flask(__name__)

6 from .views.routes import api
7 app.register_blueprint(api)

9 return app

Now when we run the app we should see the following:
>> poetry run flask --app todo run -p 6400

* Serving Flask app 'todo'
* Debug mode: off
WARNING: This is a development server. Do not use it in a production deployment.

Use a production WSGI server instead.
* Running on http://127.0.0.1:6400
Press CTRL+C to quit

11

Note that the -p 6400 flag is used to specify the port we want to run the server on, this allows us torun multiple servers at the same time.Open your browser and go to http://localhost:6400/api/v1/health and you should see a blank page with"ok" written on it.If you run into any issues, make sure your files are in the following structure and that you are runningthese commands in the root folder.
.
|-- README.md
|-- pyproject.toml
|-- poetry.lock
|-- todo

|-- __init__.py
|-- views

|-- routes.py

5.2.3 Returning JSON with Flask

We have a web server running now but we are communicating with text instead of a structured format.JSON is a common format to communicate data between services and is human readable. To start usingJSON we are going to make a small change to our health endpoint. In the routes.py file, add a new importfor jsonify and change the health endpoint to the following:
1 from flask import Blueprint, jsonify

6 @api.route('/health')
7 def health():
8 return jsonify({"status": "ok"})

Now let’s go back to our browser and refresh, we should see the following:
{
"status": "ok"

}

Info
If you are using Firefox the JSON will be parsed and presented in a structured form. To get this forChrome you can install extensions from the Chrome web store.

5.2.4 Calling your API locally

We have many choices when it comes to calling our API locally. We could use curl, Postman, VS Code, orour browser. We are going to focus on using curl and the REST Visual Studio Code extension.

12

Info
For GET requests we can use our browser to call the API but for POST, PUT, and DELETE requestswe will need to use a tool like curl or Postman.
cURLInstall curl if it is available for your operating system. If you are on a Mac, you can install it with home-brew otherwise it is available for most Linux distributions.Now that we have the tool installed let’s have our API running in a terminal window and open up a newterminal so we can make requests to our API. Enter in the following into your terminal to call your API.
$ curl -X GET http://localhost:6400/api/v1/health

You should see the following response:
{
"status": "ok"

}

VS CodeIf you are using Visual Studio Code for your text editor you can install the “Rest Client” by HuachaoMao. This extension allows you to have files with requests that you can then run from within the editor.The benefit of this method is that we can also check this into our repository.Find the extension in the VS Code marketplace and install it. Once installed, create a new file in theroot of your project called endpoints.http and add the following to it:
@baseUrl = http://localhost:6400

Health
GET {{baseUrl}}/api/v1/health

A subtle "Send Request" should be visible between the comment and the GET. Click on this and a newtab should open up with the response from the API. The response should be similar to below:
HTTP/1.1 200 OK
Server: Werkzeug/2.2.3 Python/3.10.9
Date: Sun, 19 Feb 2023 04:13:00 GMT
Content-Type: application/json
Content-Length: 16
Connection: close

{
"status": "ok"

}

We can also see in the terminal that our webserver has logged our request by the output of:
13

127.0.0.1 - - [19/Feb/2023 14:13:00] "GET /api/health HTTP/1.1" 200 -

5.2.5 Creating more endpoints

Let’s expand our endpoints.http file to include the other endpoints that we need to create for our todoapplication. Expand the file to include the following GET, POST, PUT, and DELETE endpoints:
@baseUrl = http://localhost:6400

Health
GET {{baseUrl}}/api/v1/health

List All Todos
GET {{baseUrl}}/api/v1/todos

Get a specific Todo
GET {{baseUrl}}/api/v1/todos/1

Create a Todo
POST {{baseUrl}}/api/v1/todos
Content-Type: application/json

{
"title": "An example Todo",
"description": "This is an example todo",

}

Update a Todo
PUT {{baseUrl}}/api/v1/todos/1
Content-Type: application/json

{
"title": "updated title",

}

Delete a Todo
DELETE {{baseUrl}}/api/v1/todos/1

Let’s run the GET request and see what happens. We should see the following:
HTTP/1.1 404 NOT FOUND
Server: Werkzeug/2.2.3 Python/3.10.9
Date: Sun, 19 Feb 2023 04:27:42 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 207
Connection: close

14

<!doctype html>
<html lang=en>
<title>404 Not Found</title>
<h1>Not Found</h1>
<p>The requested URL was not found on the server. If you entered the URL manually

please check your spelling and try again.</p>

Now we can start to create the endpoints that we need for our todo application. In the routes.py file,add the following code to the bottom of the file:
1 @api.route('/todos', methods=['GET'])
2 def get_todos():
3 return jsonify([])

Now the server should reload, if it does not, you can manually reload it by stopping the process andrestarting it. Now if we run the GET request again we should see the following:
HTTP/1.1 200 OK
Server: Werkzeug/2.2.3 Python/3.10.9
Date: Sun, 19 Feb 2023 04:38:44 GMT
Content-Type: application/json
Content-Length: 3
Connection: close

[]

This endpoint is for listing all the todos that the user has. For now we are going to return a hard codedtodo item so we can get used to having the API return data. In the routes.py file, modify the get_todosfunction to return a hard coded todo item:
1 @api.route('/todos', methods=['GET'])
2 def get_todos():
3 return jsonify([{
4 "id": 1,
5 "title": "Watch CSSE6400 Lecture",
6 "description": "Watch the CSSE6400 lecture on ECHO360 for week 1",
7 "completed": True,
8 "deadline_at": "2023-02-27T00:00:00",
9 "created_at": "2023-02-20T00:00:00",

10 "updated_at": "2023-02-20T00:00:00"
11 }])

Now let’s run the GET request again and we should see the following:

15

HTTP/1.1 200 OK
Server: Werkzeug/2.2.3 Python/3.10.9
Date: Sun, 19 Feb 2023 04:44:00 GMT
Content-Type: application/json
Content-Length: 200
Connection: close

[
{
"id": 1,
"title": "Watch CSSE6400 Lecture",
"description": "Watch the CSSE6400 lecture on ECHO360 for week 1",
"completed": true,
"deadline_at": "2023-02-27T00:00:00",
"created_at": "2023-02-20T00:00:00",
"updated_at": "2023-02-20T00:00:00"

}
]

Next is our endpoint to get an individual todo by its id. In the routes.py file, add the following codeto the bottom of the file:
1 @api.route('/todos/<int:id>', methods=['GET'])
2 def get_todo(id):
3 return jsonify({
4 "id": id,
5 "title": "Watch CSSE6400 Lecture",
6 "description": "Watch the CSSE6400 lecture on ECHO360 for week 1",
7 "completed": True,
8 "deadline_at": "2023-02-27T00:00:00",
9 "created_at": "2023-02-20T00:00:00",

10 "updated_at": "2023-02-20T00:00:00"
11 })

You will notice in this function we have a single parameter which is the ID fetched from the URL. Youcan see this in the <int:id> part of the route annotation. This is a Flask feature that allows you to fetchparameters from the URL.These were our read only methods, now let’s get to the mutating methods. First is our endpoint tocreate a new todo. In the routes.py file, add the following code to the bottom of the file:
1 @api.route('/todos', methods=['POST'])
2 def create_todo():
3 return jsonify({
4 "id": 1,
5 "title": "Watch CSSE6400 Lecture",
6 "description": "Watch the CSSE6400 lecture on ECHO360 for week 1",
7 "completed": True,

16

8 "deadline_at": "2023-02-27T00:00:00",
9 "created_at": "2023-02-20T00:00:00",

10 "updated_at": "2023-02-20T00:00:00"
11 }), 201

You will notice that currently this function is the same as the GET request but in future weeks wewill build out the functionality to actually create a todo. Next is our endpoint to update a todo. In the
routes.py file, add the following code to the bottom of the file:

1 @api.route('/todos/<int:id>', methods=['PUT'])
2 def update_todo(id):
3 return jsonify({
4 "id": id,
5 "title": "Watch CSSE6400 Lecture",
6 "description": "Watch the CSSE6400 lecture on ECHO360 for week 1",
7 "completed": True,
8 "deadline_at": "2023-02-27T00:00:00",
9 "created_at": "2023-02-20T00:00:00",

10 "updated_at": "2023-02-20T00:00:00"
11 })

Likewise with the POST request, this function is the same as the GET request but in future weeks wewill build out the functionality to actually update a todo. Finally is our endpoint to delete a todo. In the
routes.py file, add the following code to the bottom of the file:

1 @api.route('/todos/<int:id>', methods=['DELETE'])
2 def delete_todo(id):
3 return jsonify({
4 "id": id,
5 "title": "Watch CSSE6400 Lecture",
6 "description": "Watch the CSSE6400 lecture on ECHO360 for week 1",
7 "completed": True,
8 "deadline_at": "2023-02-27T00:00:00",
9 "created_at": "2023-02-20T00:00:00",

10 "updated_at": "2023-02-20T00:00:00"
11 })

Likewise with the POST request, this function is the same as the GET request but in future weeks wewill build out the functionality to actually delete a todo.With the endpoints you may have noticed us defining the methods, this is because we want to definewhich HTTP methods are allowed for each endpoint. For example, we do not want a user to be able todelete a todo by sending a GET request, we want them to send a DELETE request.This concludes this week’s practical. Next week we will add storage to our API so that we can actuallycreate, update, and delete todos. We will also add some tests to our API to ensure that it is working asexpected and meets our specification. Remember to ask for assistance on the Ed Discussion board if youget stuck or have any questions.

17

	Web Application Programming Interface (API)
	This Week
	Practicals
	Concepts
	Networking
	URLs
	HTTP
	Request
	Response

	JSON
	REST

	GitHub
	Creating a GitHub Account
	Joining the Course Organisation
	Joining the GitHub Classroom
	Creating a Practical Repository

	TODO App
	The API design
	GET /api/v1/health
	GET /api/v1/todos
	GET /api/v1/todos/{id}
	POST /api/v1/todos
	PUT /api/v1/todos/{id}
	DELETE /api/v1/todos/{id}

	Implementation with Flask
	Setting up your environment
	Initialising with Flask
	Returning JSON with Flask
	Calling your API locally
	Creating more endpoints

