
Last Updated on 2024/03/02

Databases in Applications Software Architecture
February 28, 2024 Brae Webb & Evan Hughes

Figure 1: A map of data storage techniques from Designing Data-Intensive Applications [1].
Aside
Github Classroom links for this practical can be found on Edstem https://edstem.org/au/
courses/15375/discussion/1753712

1 This Week
This week our goal is to:

• explore the various techniques developers use to store data; and
• upgrade our todo application to use a local sqlite relational database.

1

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/ch02.html
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/ch02.html
https://edstem.org/au/courses/15375/discussion/1753712
https://edstem.org/au/courses/15375/discussion/1753712

2 Databases and Data Models
Unfortunately, to build interesting software we often need to store and use data. The storage of dataintroduces a number of challenges when designing, creating, and maintaining our software. However, notall data storage techniques are created equal; the choice of data storage model can have a profound impacton our software’s complexity and maintainability. In this practical, we want to take a superficial explorationof our island of data storage models. For a more in-depth treatment of data storage models that is outsidethe scope of this course, see Chapter 2 of the Designing Data-Intensive Applications book [1].
2.1 Relational Storage
Relational databases are what you have been exposed to the most in your University career — think MySQL,Postgres, Oracle DB, etc. This type of database is good at modelling the real world which is often a highlyconnected environment.Some popular offerings are below:

• MySQL/MariaDB [Amazon RDS / Amazon Aurora].
• Postgres [Amazon RDS / Amazon Aurora].
• SQLite.
The AWS offerings of these services come in two different types, we have the traditional approach ofserver capacity (x cores, y ram) and we have a server-less approach. The server-less approach is a moredynamic database that can scale to large amounts of load when needed though at a cost per request.

2.1.1 ORM

Object Relational Mapping (ORM) is a fairly common tool for programmers to use to make developingwith databases smoother. One fairly prevalent example of this is SQLAlchemy which is a very widely useddatabase abstraction for python. SQLAlchemy allows us to move to a higher level of abstraction than SQLqueries and perform database actions using standard python code.The benefits of ORMs are the ability to model database objects in our existing programming languageinstead of having large blocks of SQL text within our source code. The disadvantages come in when weneed to do specific SQL work or where the abstractions cost is greater than the benefits.
2.2 Wide-Column Storage
Wide-Column databases are a form of NoSQL or non-relational data stores. In these data stores the datamodel design is focused more on having efficient queries at the cost of data duplication. A warning to thereader that these models are not flexible after creation, it is much easier to answer a new use case in arelational model.

• Apache Cassandra [Amazon Keyspaces for Cassandra].
• Apache HBase.

2

2.3 Key-Value Storage
Key-Value stores are very popular for cache or remote config use cases, some of the most notable are Redisand Memcached. These stores allow efficient lookup of values via keys and are usually stored in-memory.

• Redis [Amazon ElastiCache for Redis].
• Memcached [Amazon ElastiCache for Memcached].
• Amazon DynamoDB.
• Amazon MemoryDB for Redis.

2.4 Time Series Storage
Time series databases are highly focused storage which is tailored to retrieving results by timestamp ranges.Many implementations also take advantage of the data model to allow efficient rollover of data and par-titioning. One of the most popular time series databases is Prometheus which is used to store monitoringmetrics.

• Amazon Timestream.
• TimescaleDB (Postgres + Addon).
• Prometheus.
• InfluxDB.
• PostgreSQL

2.5 Document Storage
Document databases are a subset of NoSQL databases with a focus on a flexible data model. MongoDBfor instance allows the user to store JSON documents and perform queries on those documents. Oneadvantage of document databases is that they match a programmers existing mental model of storingdata in formats such as JSON.

• MongoDB.
• Apache CouchDB.
• Amazon DocumentDB.
• Amazon DynamoDB.

2.6 Graph Storage
Graph Databases are relational storage with a few enhancements to allow fast neighbour look-ups. Thesedatabases also allow the implementation of graph algorithms to query data.

• Amazon Neptune.
• Neo4J.
• Janus Graph.

3

Figure 2: Graph Database Example from the Neo4J documentation.
3 Enhancing the Todo App with Storage
Last week we created a simple web server that can listen on a port and respond to HTTP requests. Theendpoints that we created are all stubs the return a hardcoded JSON response. This week we will add adatabase to our application to support persistent storage.
3.1 Creating a Practical Repository
Navigate to the GitHub Classroom link for this practical provided on the EdStem discussion board. As withlast week, this will create a new repository for you in the course organisation. You can now clone thisrepository to your local machine or work directly in the browser with GitHub codespaces. This repositorywill be populated with our solution to last weeks practical exercise. You may modify this solution or replaceit with your own.
3.2 Installing the Database Dependencies
We will be using a Python library called SQLAlchemy to interact with our database. This library abstractsthe SQL queries away and allows us to interact with the database using Python objects. We will be usingSQLAlchemy using a package called Flask-SQLAlchemy, a wrapper around SQLAlchemy, that is designedto work with Flask our WebServer library.

$ poetry add flask-sqlalchemy

4

https://neo4j.com/developer/example-project/
https://neo4j.com/developer/example-project/

3.3 Creating the Database and Models
We will be using a database called SQLite for this practical. SQLite is a file-based database which is easyto setup and use. As the database is isolated to a file, SQLite is a good choice for initial development.Now that our dependencies are installed, navigate to the cloned practical directory and create a newfolder within the todo folder called models. Inside this folder create a new file called todo.py and a newfile called __init__.py.Inside the __init__.py file we will add the following code:
from flask_sqlalchemy import SQLAlchemy

db = SQLAlchemy()

All this file does is setup a new SQLAlchemy object which we will use to interact with our database. Inthe models/todo.py file we will add the following code:
import datetime
from . import db

class Todo(db.Model):
__tablename__ = 'todos'

This is how we define a column, this is also the primary key
id = db.Column(db.Integer, primary_key=True)
This is a manadatory column of 80 characters
title = db.Column(db.String(80), nullable=False)
This is an optional column of 120 characters
description = db.Column(db.String(120), nullable=True)
This column has a default value of False
completed = db.Column(db.Boolean, nullable=False, default=False)
deadline_at = db.Column(db.DateTime, nullable=True)
This column has a default value which is a function call
created_at = db.Column(db.DateTime, nullable=False, default=datetime.datetime.

utcnow)
This column has a default value which is a function call and also updates on

update
updated_at = db.Column(db.DateTime, nullable=False, default=datetime.datetime.

utcnow, onupdate=datetime.datetime.utcnow)

This is a helper method to convert the model to a dictionary
def to_dict(self):

return {
'id': self.id,
'title': self.title,
'description': self.description,
'completed': self.completed,
'deadline_at': self.deadline_at.isoformat() if self.deadline_at else None,
'created_at': self.created_at.isoformat() if self.created_at else None,
'updated_at': self.updated_at.isoformat() if self.updated_at else None,

5

}

def __repr__(self):
return f'<Todo {self.id} {self.title}>'

The above code is doing a lot of the heavy lifting for us in our database table generation, have a look atthe comments above to see what each line is doing.
3.4 Configuring the Database
Now that we have defined our database schema using an ORM, we need to configure our application touse the database. Open the todo/__init__.py file and change the code to the following:
from flask import Flask
from flask_sqlalchemy import SQLAlchemy

def create_app():
app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] = "sqlite:///db.sqlite"

Load the models
from todo.models import db
from todo.models.todo import Todo
db.init_app(app)

Create the database tables
with app.app_context():

db.create_all()
db.session.commit()

Register the blueprints
from todo.views.routes import api
app.register_blueprint(api)

return app

In the above we set a default location, defined as a URI, for our database. As we using SQLite we canset the database to be a file on the file system. In production systems, you would set this to a URI thatdefines the credentials and hostname of your database server. In latter practicals, we will get experienceusing more complex URIs.If we run our application now, we will see that the database file has been created for us.

$ poetry run flask --app todo run -p 6400 --debug

6

Your project structure should have a least the follow structure (there may be additional files):
-- README.md
-- Pipfile
-- Pipfile.lock
-- endpoints.http
-- instance
| -- db.sqlite

-- todo
| -- __init__.py
| -- views

| -- routes.py
| -- models

| -- __init__.py
| -- todo.py

3.5 Inspecting the Database
We can use the sqlite3 command line tool to inspect the database. Open a terminal and navigate to theroot of your project. Then run the following command:

$ sqlite3 instance/db.sqlite

Info
Most platforms including MacOS, WSL2, and most Linux environments come with SQLite installed.If you get an error running the above command, you may have to install SQLite.
This will open the SQLite command line tool and connect to the database file. We can then run thefollowing command to see the tables in our database:

.tables

This will show us the tables in our database. We can then run the following command to see the schemaof our table:
.schema todos

This will show us the columns in our table. We can then run the following command to see the data inour table:
SELECT * FROM todos;

This should initially show us no output, indicating that the table is currently empty. We can then runthe following command to exit the SQLite command line tool:
7

.exit

You should notice that our table is called todos and not todo because we specified todos with the
__tablename__ attribute.
3.6 Using the Database
Now that we have a database intergrated into our application, we will modify our endpoints to take ad-vantage of it.Open the todo/views/routes.py file and add the following imports to the top of the file:
from flask import Blueprint, jsonify, request
from todo.models import db
from todo.models.todo import Todo
from datetime import datetime

Open the todo/views/routes.py file and change the get_todos endpoint to the following:
@api.route('/todos', methods=['GET'])
def get_todos():

todos = Todo.query.all()
result = []
for todo in todos:

result.append(todo.to_dict())
return jsonify(result)

This will query the database for all the todos and return them as JSON. We can then change the
get_todo endpoint to the following:
@api.route('/todos/<int:todo_id>', methods=['GET'])
def get_todo(todo_id):

todo = Todo.query.get(todo_id)
if todo is None:

return jsonify({'error': 'Todo not found'}), 404
return jsonify(todo.to_dict())

Now we have modified these endpoints to use the database — let’s test that our application is stillfunctioning correctly. Restart your webserver and navigate to the /api/v1/todos endpoint. You shouldsee the following JSON response:
[]

Of course our API does not have any todo items in it yet. We will now add the ability to insert todoitems to our database. Open the todo/views/routes.py file and change the create_todo endpoint tothe following:

8

@api.route('/todos', methods=['POST'])
def create_todo():

todo = Todo(
title=request.json.get('title'),
description=request.json.get('description'),
completed=request.json.get('completed', False),

)
if 'deadline_at' in request.json:

todo.deadline_at = datetime.fromisoformat(request.json.get('deadline_at'))

Adds a new record to the database or will update an existing record
db.session.add(todo)
Commits the changes to the database, this must be called for the changes to be

saved
db.session.commit()
return jsonify(todo.to_dict()), 201

This endpoint now allows us create a todo item in the database. Test this endpoint by going to end-points.http (or your API query tool of choice) and running the POST request. You should see the followingresponse (with different created_at and updated_at values):
{
"id": 1,
"title": "Test Todo",
"description": "This is a test todo",
"completed": false,
"deadline_at": null,
"created_at": "2023-02-27T12:00:00.000000Z",
"updated_at": "2023-02-27T12:00:00.000000Z"

}

Now if we go to our /api/v1/todos endpoint we should see the todo item we just created:
[
{
"id": 1,
"title": "Test Todo",
"description": "This is a test todo",
"completed": false,
"deadline_at": null,
"created_at": "2023-02-27T12:00:00.000000Z",
"updated_at": "2023-02-27T12:00:00.000000Z"

}
]

Now let’s add the remaining endpoints. Change the update_todo endpoint to the following:

9

@api.route('/todos/<int:todo_id>', methods=['PUT'])
def update_todo(todo_id):

todo = Todo.query.get(todo_id)
if todo is None:

return jsonify({'error': 'Todo not found'}), 404

todo.title = request.json.get('title', todo.title)
todo.description = request.json.get('description', todo.description)
todo.completed = request.json.get('completed', todo.completed)
todo.deadline_at = request.json.get('deadline_at', todo.deadline_at)
db.session.commit()

return jsonify(todo.to_dict())

This endpoint will update a todo item in the database. Let’s test this endpoint by going to our end-points.http and running the PUT request. You should see the following response:
{
"id": 1,
"title": "Updated Test Todo",
"description": "This is an updated test todo",
"completed": false,
"deadline_at": null,
"created_at": "2023-02-27T12:00:00.000000Z",
"updated_at": "2023-02-27T12:00:00.000000Z"

}

To implement delete functionalitty, we will use the HTTP DELETE method and the delete .method ofthe database session. Open the todo/views/routes.py file and change the delete_todo endpoint tothe following:
@api.route('/todos/<int:todo_id>', methods=['DELETE'])
def delete_todo(todo_id):

todo = Todo.query.get(todo_id)
if todo is None:

return jsonify({}), 200

db.session.delete(todo)
db.session.commit()
return jsonify(todo.to_dict()), 200

We now have a set of endpoints that can perform the CRUD operations of our API but some function-ality is missing. We are gonna add that functionality after setting up some tests to help us do Test Driven
Development.

10

4 Testing the API

4.1 Setting up the testing environment
In the project, you will have a tests folder. This contains test_todo.py which has a range of providedtests for the todo endpoints. However, we need to setup a few components to make it work.Inside the tests folder create a base.py file. Inside the base.py file add the following code:
from todo import create_app
import unittest

class TodoTest(unittest.TestCase):
def setUp(self):

self.app = create_app(config_overrides={
'SQLALCHEMY_DATABASE_URI': 'sqlite:///:memory:',
'TESTING': True

})

self.client = self.app.test_client()

def assertDictSubset(self, expected_subset: dict, whole: dict):
for key, value in expected_subset.items():

self.assertEqual(whole[key], value)

This base class is what we will use to help setup our tests and provide an assertion helper method. The
setUpmethod is called before each test and is used to initialise the in-memory database. TheassertDictSubsetmethod is a helper method that we will use to compare the todo items we get from the API with the todoitems we expect to get from the API.As you can see we use a slight modification to the create_app function. We are passing in a dictionaryof config overrides. This allows us to override the config values for the testing environment.
4.2 Prepping the config for testing
Open the todo/__init__.py file and adjust the create_app function to the following:
def create_app(config_overrides=None):

app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] = "sqlite:///db.sqlite"
if config_overrides:

app.config.update(config_overrides)

Load the models
from todo.models import db
from todo.models.todo import Todo
db.init_app(app)

Create the database tables

11

with app.app_context():
db.create_all()
db.session.commit()

Register the blueprints
from .views.routes import api
app.register_blueprint(api)

return app

4.3 Writing our first tests
Now we will write our first tests. Open the tests folder and create a test_health.py file. Add the fol-lowing code:
from tests.base import TodoTest

class TestHealth(TodoTest):
def test_health(self):

response = self.client.get('/api/v1/health')
self.assertEqual(response.status_code, 200)
self.assertEqual(response.json, {'status': 'ok'})

This test will make a GET request to the /api/v1/health endpoint and check
• that the response is a 200 status code; and
• that the response is a JSON object with the key status and the value ok.
To run this test stop your server, if it is running, and run the following command:

$ poetry run python3 -m unittest tests/test_health.py

You should see the following output:
>> poetry run python3 -m unittest tests/test_health.py
....
--
Ran 1 tests in 0.011s

OK

12

4.4 Test Driven Development
Now you’ve created a test for the health endpoint and run it. To run the suite of provided tests, use thefollowing command:

$ poetry run python3 -m unittest discover -s tests

If you’ve used only the code we’ve provided, you should see some of the tests fail.The tests are based on the specification from week one, we would like you to change your API to makethe tests pass.
Hint
To check if the request is a JSON request you can use the request.is_json method.
If you get stuck feel free to ask your peers / staff for help.

5 Finishing Up
We now have a working API which we can use to create, read, update, and delete todo items. We can alsouse the API to:

• mark todo items as completed;
• filter todo items by whether they are completed or not (a query parameter of completed in the listget query); and
• filter todo items by whether they are within the next N days. In the tests this is exposed by a queryparameter window.
Next week we will dockerise our API and use docker-compose to run our API and a database withincontainers.

References
[1] M. Kleppmann, Designing Data-Intensive Applications: The big ideas behind reliable, scalable, and main-

tainable systems. O’Reilly Media, Inc., March 2017.

13

	Databases in Applications
	This Week
	Databases and Data Models
	Relational Storage
	ORM

	Wide-Column Storage
	Key-Value Storage
	Time Series Storage
	Document Storage
	Graph Storage

	Enhancing the Todo App with Storage
	Creating a Practical Repository
	Installing the Database Dependencies
	Creating the Database and Models
	Configuring the Database
	Inspecting the Database
	Using the Database

	Testing the API
	Setting up the testing environment
	Prepping the config for testing
	Writing our first tests
	Test Driven Development

	Finishing Up

