
Last Updated on 2024/03/26

Docker and Docker Compose Software Architecture
March 6, 2024 Evan Hughes & Brae Webb

Aside
Github Classroom links for this practical can be found on Edstem https://edstem.org/au/
courses/15375/discussion/1753712

1 This Week
This week our goal is to:

• Gain hands on practice with Docker.
• Containerise our Todo application.
• Move to a PostgreSQL database from the SQLite database.

1

https://edstem.org/au/courses/15375/discussion/1753712
https://edstem.org/au/courses/15375/discussion/1753712

Notice
2 Installing Docker
Before the practical class, please install Docker on your machine. Start the process of installingDocker while your tutor runs through the first part of the practical.To install Docker on your Mac or Windows machine you can follow the instructions on the dockerwebsite: https://docs.docker.com/get-docker/. If you are using a Linuxmachine you can installDocker using your package manager. For example on Ubuntu you can use the following command:

$ sudo apt-get install docker.io

Info
If you are using a Linux machine you may need to add your user to the docker group so thatyou can rundocker commandswithout sudo. While thedockerwebsite suggests using docker-desktop for Linux, this course recommends using the native docker installation.
Info
The GitHub Codespaces environment has Docker and Docker-Compose installed.

3 Getting Started with Docker
In the lectureswe have delved into theworld of containers and how they can be used to create a consistentenvironment for our applications. Depending on the courses you have taken youmay have been exposedto them as either a user or a consumer, for instance if you have submitted assignments in CSSE1001 orCSSE2002 the autograding uses Docker to run and test your code.

Notice
This practicalwill assumeyouhavenot usedDocker before butwewill be skippingover someaspectssince its not needed for our purposes. Please watch the lecture for a foundational understanding ofcontainer technology and terminology.

3.1 Docker Images
Docker images are the layers of files required to run containers. They are self contained environments thatshould contain the depenedencies and code for any application. A common way to build an image is touse a Dockerfile.
3.1.1 Dockerfile

The Dockerfile is a plain text file with its own syntax that is used to describe the instructions for creatingan image. The series of instructions are run in order to create each layer of the image.A reference of all possible Dockerfile instructions can be found here: https://docs.docker.com/
engine/reference/builder/. For the purposes of the course wewill cover the core instructions, namely;
FROM, RUN, COPY, ADD, WORKDIR, CMD, and ENTRYPOINT.

2

https://docs.docker.com/get-docker/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

FROM The FROM instruction should be the first instruction in your Dockerfile and specifies the baseimage for subsequent instructions. If you want to start with an empty image, use the scratch image.Otherwise, you likelywant to start from an image that has a number of the common utilities pre-packaged.
» cat Dockerfile

FROM ubuntu:22.04

In this case we are using the latest version of ubuntu. This ubuntu is a very minimal image that is in-tended to be used as a starting point and is itself an image. Unless you are working in an obscure language,you will often want to start from an image that already has your language or framework installed. Forexample, you can start from the nodejs image, or the python image.
RUN The RUN instruction will execute commands on top of the current layer and store the changes asa new layer. The layer will be used for the next step in the Dockerfile.

» cat Dockerfile
FROM ubuntu:22.04

RUN apt-get update && apt-get install -y python3 python3-pip

The RUN instruction allows us to execute commands when the container is built. The example aboveis installing python dependencies for a fake application.
Info
When using the apt package manager on the ubuntu image, remember that the package indexesare removed to reduce the size of the base image.We’ve made amistake in the above example resulting in our image size being larger than necessary,can you spot it?

COPY The COPY instruction copies files or directories from <src> on the host machine where the imageis being built to the filesystem of the container at the path <dest>.
» cat Dockerfile

FROM ubuntu:22.04

RUN apt-get update && apt-get install -y python3 python3-pip

Copying our application into the container
COPY fan-club-runner /app

The COPY instruction is one of the simplier ways to put resources into the container. Be aware thatwhen you COPY files into the container they will exist in a layer forever. The following example will stillexpose the secrets.txt file even though we removed it in another layer.

3

» cat Dockerfile
FROM ubuntu:22.04

Installing dependencies for running a python application
RUN apt-get update && apt-get install -y python3 python3-pip

Copying our application into the container
COPY fan-club-runner /app

Removing the secrets file
RUN rm /app/secrets.txt

ADD The ADD instruction copies files, directories, or remote file URLs from <src> to the filesystem of theimage at the path <dest>.ADD can behave like COPY but it can also pull in files from remote locations and extract tars. Thiscan be handy if your application requires external static files and you dont want to store them in your gitrepository. Though the ADD command is usually not recommended and is often replaced with curl orwget.
ADD https://csse6400.uqcloud.net/slides/containers.pdf .

RUN curl https://csse6400.uqcloud.net/slides/containers.pdf -o containers.pdf

WORKDIR The WORKDIR instruction sets the working directory for any subsequent RUN, CMD, EN-TRYPOINT, COPY, or ADD instruction. If the WORKDIR does not exist, it will be created even if it is notused in any subsequent Dockerfile instruction. This instruction is a readability feature to help you reducethe amount of moving around within the container.
» cat Dockerfile

FROM ubuntu:22.04

Installing dependencies for running a python application
RUN apt-get update && apt-get install -y python3 python3-pip

Setting the working directory
WORKDIR /app

Copying our application into the container
COPY fan-club-runner .

ENTRYPOINT The ENTRYPOINT instruction allows you to configure what process is executed when acontainer is run.

4

» cat Dockerfile

FROM ubuntu:22.04

Installing dependencies for running a python application
RUN apt-get update && apt-get install -y python3 python3-pip

Setting the working directory
WORKDIR /app

Copying our application into the container
COPY fan-club-runner .

Setting the default command
ENTRYPOINT ["python3", "fan-club-runner.py"]

The ENTRYPOINT instruction is the executable that will be run when the container starts. The CMDinstruction accompanises the ENTRYPOINT and is the default arguments that will be passed to the EN-TRYPOINT.
> docker build -t fan-club .
> docker run --rm fan-clib

example output:
Richard Thomas Fan Club!

CMD CMD provides defaults for an executing container.

» cat Dockerfile

FROM ubuntu:22.04

Installing dependencies for running a python application
RUN apt-get update && apt-get install -y python3 python3-pip

Setting the working directory
WORKDIR /app

Copying our application into the container
COPY fan-club-runner .

Setting the default command
ENTRYPOINT ["python3", "fan-club-runner.py"]
CMD ["--help"]

5

The CMD instruction sets default parameters for the ENTRYPOINT but is easily overriden when thecontainer is run. The following example will override the default --help argument and run the applicationwith the --version argument.
> docker run --rm fan-club --version

Fan Club Runner 1.0.0

Info
Occasionally you will see the CMD instruction used without the ENTRYPOINT instruction.This is only possible because the default ENTRYPOINT is /bin/sh -c.So docker run –rm -it ubuntu /bin/bash actually runs the process /bin/sh -c /bin/bash.
This concludes the Dockerfile instructions required for this practical, however, there are more that youmay need to explore in the future. The full list of instructions can be found in the official documentation:
https://docs.docker.com/engine/reference/builder/

3.1.2 Dockerfile Layers

In the previous sections we used the RUN, ADD, and COPY to build an image to run our example applica-tion. When the container is built, each of these instructions is run to create layer of the image. This meansthat if you change a line in the Dockerfile you only need to rebuild the layers that come after the alteredline. This is a huge time saver when developing your Dockerfile.Let’s take a look at the Dockerfile below. In this Dockerfile, our application now has Python dependen-cies that need to be installed.
» cat Dockerfile

FROM ubuntu:22.04

Installing dependencies for running a python application
RUN apt-get update && apt-get install -y python3 python3-pip

Copying our application into the container
COPY . /app

Installing our application dependencies
RUN pip3 install -r /app/requirements.txt

Setting the working directory
WORKDIR /app

Running our application
CMD ["python3", "src/app.py"]

We are copying in the entire application directory before we install our requirements. We can improvethis so that we only copy in the requirements file and then install the requirements. This means that if wechange our application code we do not need to reinstall the requirements.
6

https://docs.docker.com/engine/reference/builder/

FROM ubuntu:22.04

Installing dependencies for running a python application
RUN apt-get update && apt-get install -y python3 python3-pip

Copying our application into the container
COPY requirements.txt /app/requirements.txt

Installing our application dependencies
RUN pip3 install -r /app/requirements.txt

Copying our application into the container
COPY src/ /app

Setting the working directory
WORKDIR /app

Running our application
CMD ["python3", "src/app.py"]

For the containers we will be building this may not be a large issue, but once your project becomeslarger and you have more dependencies it can be a real time saver, so it is worth getting into the habitearly.To see the layers that are created when you build your Dockerfile you can use the following command:
docker history <image name>

Example
docker history ubuntu:latest

7

Info
Note how the Ubuntu image cheats and copies the whole file structure in one layer rather thanrunning commands to build it incrementally.This is a common tactic in core images that the developers expect others to build on top of. Onereason being the 127 layer limit of Docker.For an example of a container that has left their whole thought process in the layers they produce,try running the Doom image.

$ docker run -it --rm -p 224:6901 -e VNC_PW=password kasmweb/doom:1.12.0

You can then go to http://localhost:224 and connect to the VNC server with the username
kasm_user password password.

$ docker history kasmweb/doom:1.12.0

3.1.3 Image Registries

When we introduced the Dockerfile we glossed over the details of from where ubuntu:latest is coming.This image comes from a registry. There are a few different registries that you can use. The default registryis hosted by Docker, this is the registry that is used when you do not specify a registry and is available at
https://hub.docker.com/.There are also registries hosted by other companies such as Google and Amazon. These are available at
https://cloud.google.com/container-registry and https://aws.amazon.com/ecr/ respectively.TheUbuntu image thatwehavebeenusing is available athttps://hub.docker.com/_/ubuntu. Whenbrowsing this page we can also see different tags that are available for this image, such as latest and
20.04.These tags are used to specify different versions of the image so you can pin your image instead ofusing the latest tag, which will always point to the latest version of the image. Note that not all imageswill have different tags or even a latest tag.

Figure 1: Ubuntu image on DockerHub
8

http://localhost:224
https://hub.docker.com/
https://cloud.google.com/container-registry
https://aws.amazon.com/ecr/
https://hub.docker.com/_/ubuntu

3.2 Docker Containers
Docker containers are the runtime instantiation of a Docker image. They are the process that is runninginside the filesystem environment that has been created as an image.Once you have a suitable Docker image, you can start and run a Docker container by using the docker
run command.
3.3 Running a Docker Container
The below shows how to run the hello-world Docker image from DockerHub.
> docker run hello-world
Hello from Docker!
This message shows that your installation appears to be working correctly.

It is worth nothing that if you do not use the --rm flag when using Docker run, the container will stillexist after it has finished running. You can view the running containers with:

$ docker ps

You can view the running and stopped containers with:

$ docker ps -a

We can modify our original command so that the container is not kept around after it terminates asshow below:

$ docker run --rm hello-world

Another commonly useful set of arguments is -i and -t which combined allow you to interact withthe running container process using your terminal. If we want to enter a Ubuntu environment, then wewould use the combined flags, -it to do so.

$ docker run --rm -it ubuntu

Next we will look at allowing the outside world into our isolated environment. Remember that con-tainers live in an isolated networking space and filesystem, however we often want to access files from ourcontainer or talk to processes running on the network inside the container.

9

3.3.1 Docker Networking

To allow our Docker containers to communicate via a network we can use the -p flag to specify ports wewish to publish. For example, if we are running an application in our container on port 6400, we canmakeit accessible outside of the container with:

$ docker run -p 6400:6400 fan-club

Note that we’ve repeated the port. The first occurence of the port is the binding on the host machine,so from the host we can go to localhost:6400 to access it. The second occurence is the port being listenedto within the container. This means that we can use different ports on the host. If we want to go to port80 to access our service, we can do so without changing the port inside of the container with:

$ docker run -p 80:6400 fan-club

Docker networking ismuchmore complicated than just this but it is a starting point so that we can startusing containers that talk to the outside world.
3.3.2 Docker Volumes

The next tool to escape from a container is to use Docker volumes. Docker volumes allow a way for us toshare the same folder between the host machine and the container. This is particularly useful for develop-ment of an application where the code we want to run is updated often. It is also useful if we are runningan application which we would like to be persistent, like a database.In our fan club example, we are storing our application within the /app directory of the container. If wewant this to live update with the contents of our application on the host (assuming we run this commandfrom the applications directory), we can do so with:

$ docker run -v $(pwd):/app fan-club

This command mounts our current working directory ($(pwd)) to the /app directory inside the con-tainer. This allows us to update our application and have the change reflected inside the container.Again, Docker volumes are a much more complex beast but host mounting is all we require for thispractical.
4 Containerising our Todo Application

4.1 Creating a Practical Repository
Navigate to the GitHub Classroom link for this practical provided by your tutor on edstem. As with lastweek, this will create a new repository for you in the course organisation. You can now clone this repositoryto your local machine or work directly in the browser with GitHub codespaces. This repository will bepopulated with our solution to last week’s practical exercise. You may modify this solution or replace itwith your own.

10

4.2 Creating a Dockerfile
Now that we have covered the basics of Docker we can Dockerise our Todo App to prepare it for deploy-ment. Inside our practical folder we will create a new file called Dockerfile. To start, we will use thefollowing Dockerfile:

» cat Dockerfile

FROM ubuntu:22.04

Installing dependencies for running a python application
RUN apt-get update && apt-get install -y python3 python3-pip postgresql-client libpq-

dev

The above image is what your local environment may have been like when you started the course. Tofollow the same setup as we have had in the practicals let’s install poetry. We can do this by adding thefollowing line to our Dockerfile:
Install poetry
RUN pip3 install poetry

Let’s now change our working directory to /app and copy our Pipfile and Pipfile.lock into thecontainer. We can then install our dependencies using poetry.
Setting the working directory
WORKDIR /app

Install poetry dependencies
COPY pyproject.toml ./
RUN poetry install --no-root

Note that we are installing dependencies in a layer separate to our application. This allows us to quicklyrebuild the image if we change anything other than the Pipfile or Pipfile.lock.Now that we have installed our dependencies we can copy our application into the container.
Copying our application into the container
COPY todo todo

Finally we can run our application by adding the following line to our Dockerfile:
Running our application
CMD ["poetry", "run", "flask", "--app", "todo", "run", "--host", "0.0.0.0", "--port",

"6400"]

We should now have a complete Dockerfile, as shown below:

11

FROM ubuntu:22.04
Installing dependencies for running a python application
RUN apt-get update && apt-get install -y python3 python3-pip postgresql-client

libpq-dev
Install poetry
RUN pip3 install poetry
Setting the working directory
WORKDIR /app
Install poetry dependencies
COPY pyproject.toml ./
RUN poetry install --no-root
Copying our application into the container
COPY todo todo
Running our application
CMD ["poetry", "run", "flask", "--app", "todo", "run", "--host", "0.0.0.0", "--port

", "6400"]

4.3 Building our Docker Image
Now thatwehave createdourDockerfilewe canbuild ourDocker image. Todo thiswewill use the followingcommand:
> docker build -t todo .
Successfully tagged todo:latest

We can then inspect our layers with the following command:
> docker image history todo

4.4 Running our Docker Container
Now that we have built our Docker image we can run our Docker container. To do this we will use thefollowing command:
> docker run -it --rm -p 6400:6400 todo
* Running on ...

We can now navigate to http://localhost:6400 to see our application running. We can stop ourcontainer by pressing Ctrl+C. This should show the todo app that we have been working with for the pastcouple of practicals.
Info
It is important for us to use the host of 0.0.0.0 when running our application. This is because weare running our application inside a container and we need to expose the port to the host machine.If we were to use the default host of 127.0.0.1 we would not be able to access our application fromoutside the container.

12

http://localhost:6400

Warning
You need to make sure that you are not running the webserver from the previous practical on port6400. If you are then you will need to stop that webserver before running the Docker container. Ifyou also have other containers running they can conflict with this container.

4.5 Optimizing Our Container
We build this container image up from the Ubuntu base image. However, we rarely want to do it this wayas their exists a huge range of base images for most languages and environments. Try to optimize yourimage by using python:3.10 as your base image.
5 Docker Compose
Docker is a useful tool itself but in terms of local development, but it is not always as easy to work with asit could be. Docker Compose allows us to run multiple containers together which can be extremely usefulfor managing complex projects that require numerous run parameters or manage multiple containers.For this practical, we want to use a database closer to our production environment. We will be using aPostgresql database which will eventually be a managed database hosted on AWS.
5.1 Moving to a Postgresql Database
This week we have actually made a small change to our application so that it can receive the SQLAlchemydatabase URI as an environment variable. This means that we can now use Docker Compose to run ourapplication and database together. To do this we will create a new file called docker-compose.yml andadd the following content:
version: "3.9"

services:
database:
image: postgres:latest
restart: always
environment:
POSTGRES_PASSWORD: verySecretPassword
POSTGRES_USER: administrator
POSTGRES_DB: todo

volumes:
- ./data/db:/var/lib/postgresql/data

app:
build: .
restart: always
environment:
SQLALCHEMY_DATABASE_URI: postgresql://administrator:

verySecretPassword@database:5432/todo
ports:
- "6400:6400"

depends_on:
- database

13

We can now run our application and database with the following command within the root directory.

$ docker-compose up

You should observe the output of this command and you can see two containers running. One is thedatabase, database, and the other is our application, app. We can now navigate to http://localhost:
6400 to see our application running. In reality though our database probably did not have enough time tostart up before our application tried to connect to it. We can fix this by adding a delay to our applicationstartup. To do this we will change the CMD instruction to the following line in our Dockerfile:
Adding a delay to our application startup
CMD ["bash", "-c", "sleep 10 && poetry run flask --app todo run --host 0.0.0.0 --port

6400"]

In the long run you would want your application to be able to retry connecting to the database if it failsbut for now we will just add a delay. We can now rebuild our Docker image and run our application anddatabase with the following commands:

$ docker-compose up --build

You may have noticed that when we defined the todo application service above we did not specify acontainer. This is because Docker Compose can be instructed to use our Dockerfile to build at time so thatwe do not have to keep using the build command.
6 Conclusion
Over the past couple of weeks we have built a full todo app API that is ready to be deployed to a remoteproduction environment. We started with a Flask API returning static responses and now we have a dy-namic API that is running in a containerised environment with an external database.We have cheatedwith our Docker deployment by using the flask development server. For a productionenvironment you will want to use a production webserver such as gunicorn or uwsgi. These web serversare designed to handle multiple requests at the same time and are much more efficient than the Flaskdevelopment server. We recommend you have a look at how to prepare a Flask application for productionas it may help you in your future projects if you choose to use Flask.
7 Extra

7.1 Python Based Dockerfile
Earlier we mentioned that you can use language specific base images for your applications. Below is anexample Dockerfile that uses the python 3.10 base image.

14

http://localhost:6400
http://localhost:6400

FROM python:3.10
Install poetry
RUN pip3 install poetry
Setting the working directory
WORKDIR /app
Install poetry dependencies
COPY pyproject.toml ./
RUN poetry install --no-root
Copying our application into the container
COPY todo todo
Running our application
CMD ["poetry", "run", "flask", "--app", "todo", "run", "--host", "0.0.0.0", "--port",

"6400"]

You will notice that we did not have to install python3 and pip and the postgresql depenedencies.

15

	Docker and Docker Compose
	This Week
	Installing Docker
	Getting Started with Docker
	Docker Images
	Dockerfile
	Dockerfile Layers
	Image Registries

	Docker Containers
	Running a Docker Container
	Docker Networking
	Docker Volumes

	Containerising our Todo Application
	Creating a Practical Repository
	Creating a Dockerfile
	Building our Docker Image
	Running our Docker Container
	Optimizing Our Container

	Docker Compose
	Moving to a Postgresql Database

	Conclusion
	Extra
	Python Based Dockerfile

