
Last Updated on 2024/03/04

Getting Started with the Cloud Software Architecture
March 13, 2024 Brae Webb & Richard Thomas & Evan Hughes

Aside
Github Classroom links for this practical can be found on Edstem https://edstem.org/au/
courses/15375/discussion/1753712

1 This Week
This week our goal is to get acquainted with AWS Academy. Throughout the course we will use AWSAcademy to learn how to deploy and manage infrastructure with AWS. Additionally, AWS Academy willbe used to develop the Cloud assignment. Specifically, this week you need to:

• Enrol in
1. AWS Academy Cloud Foundations [73523] course;

1

https://edstem.org/au/courses/15375/discussion/1753712
https://edstem.org/au/courses/15375/discussion/1753712
https://awsacademy.instructure.com/courses/73523

2. AWS Academy Learner Lab [73527] course;
3. AWS Academy Cloud Architecting [73526] course; and
4. AWS Academy Cloud Developing [73525] course.

• Navigate the AWS Academy interface.
• Enter the AWS Console from an AWS Academy lab.
• Provision an EC2 instance that deploys a simple static website.
We will then start using an Infrastructure as Code tool, specifically, Terraform, to deploy the static web-site instead of using the AWS Console. Specifically, this week you need to:
• Authenticate Terraform to use the AWS learner lab.
• Configure a single server website in Terraform and deploy.
• Create a Terraform module for deploying arbitrary single server websites.

2 AWS Academy
AWS Academy is an educational platform to teach you how to use AWS services. In this course, we will beusing it in two ways:

1. The AWS Cloud Foundations, Cloud Architecting, and Cloud Developing courses are supplementarymaterial to help cement your ability to use AWS. You are encouraged to work your way through atleast the AWS Cloud Foundations and Cloud Architecting courses.
2. The AWS Learner Lab provides access to an environment which will be used in these practicals tolearn AWS. Later Learn Labs will be used to develop your Cloud Infrastructure assignment.

3 Enrol in AWS Academy
1. Set up your AWS Academy account by responding to your email invitation and clicking Get Started.The email invitation will come from AWS Academy. Check your junk/spam folders.

2

https://awsacademy.instructure.com/courses/73527
https://awsacademy.instructure.com/courses/73526
https://awsacademy.instructure.com/courses/73525

2. Go to https://www.awsacademy.com/vforcesite/LMS_Login to login.
(a) Press Student Login.
(b) Use the email address that received the email invitation.

3

https://www.awsacademy.com/vforcesite/LMS_Login

4 Exploring the Interface

Aside
We will just be looking at the learner lab today, please ask on the Ed Discussion board if you needhelp using the supplementary AWS Academy courses.
Enter the learner lab via the following steps.
1. Once you have enrolled in the course, you should see the course page.

2. Navigate to the Modules tab and select the link for “Launch AWS Academy Learner Lab”. You willneed to accept the AWS Learner Lab terms and conditions to be able to launch learner lab. You mayalso open and browse the “AWS Academy Learner Lab Student Guide” and “Learn how to effectivelyuse the AWS Academy Learner Lab” links which cover some of the content of this practical.

4

3. You should now see the learner lab interface.
• The AWS text, near the top left of the window, with the (currently) red circle is the link to openthe AWS console.
• You can also see your budget. Note that the budget is not updated in real-time, so avoid creatingmultiple resources at once.
• The 00:00 is a countdown of hours remaining for your lab. A lab can only remain active for 4hours, after which it will close, unless you press start lab again before the 4 hours expires. Oncethe lab is started, 00:00 will change to 04:00.
• AWS details will become important later but are not needed now.
• The README button will re-open the text panel currently on the right of the terminal interface.
• The README text has a lot of important information including what AWS services are availablein the learner labs environment, please read it.
• The terminal interface is an environment with the SSH keys required to connect to AWS in-stances semi-automatically (we will use this today).

5

4. Go ahead and start the lab. It will take a few moments to get ready. The red circle will turn yellowas the lab is starting, and green once it has started. Click on the green circle when it is available. Thiswill open the AWS Console in a new browser tab. If you end up working for a company which usesAWS, welcome to your new home.

6

Aside
Amazon Web Services (AWS) is an Infrastructure as a Service (IaaS) and Software as a Service (SaaS)provider. They offer a collection of services which are helpful for development. For example, theyoffer virtual compute resources, database storage options, and networking to tie it all together. Ser-vices are offered on a pay as you go model, meaning you only pay for the seconds you use a service.We will now get acquainted with some simple services offered by AWS.

5 AWS EC2
Today we are going to focus on using AWS’s EC2 service. Elastic Compute Cloud (EC2) is the primarycompute service offered by AWS. It allows you to create virtual machines on Amazon’s infrastructure. Youhave full control over this machine and can configure it for whatever purpose you need.Navigate to the search bar in the top left and find the EC2 service. You might find this interface over-whelming. It is important to note that since EC2 is one of the primary services offered by AWS, manysmaller services we do not need are bundled into the service.

7

Today, we only need the Instances dashboard. Navigate to there and select “Launch instance”.

8

5.1 EC2 AMI
First we will need to select an Amazon Machine Image (AMI). An AMI is the template (cookie cutter) whichprovides instructions on how an instance should be provisioned. Amazon offers a range of built-in AMIs.There are also community AMIs or you can create your own. As we just want a simple server today, we willuse one of the built-in AMIs.We will use the Amazon Linux 2023 AMI today, it is considered one of the fundamental images. EveryAMI has a unique AMI code, which is ami-0e731c8a588258d0d for the Amazon Linux 2023 AMI.

5.2 Instance Settings
The settings to configure your instance are:

1. Add a ‘Name’ tag. Call it the name of your website, e.g. hextris.
2. Select an appropriate AMI, i.e. Amazon Linux 2023 AMI, ami-0e731c8a588258d0d.
3. Select a 64-bit (x86) architecture.
4. The instance type defines the computing, memory, networking and storage capabilities of your in-stance. We do not need a large server, choose t2.micro.
5. Select the existing vockey (Type: RSA) key pair option.

9

6. In network settings, choose ‘Create security group’ and select to allow SSH traffic from anywhere,and HTTPS and HTTP access from the internet.
7. Keep the ‘Configure storage’ settings as default.
8. Do not worry about the ‘Advanced details’ options for now.
9. You can now launch the instance to start your server.

6 Accessing the Instance
Return to the Instances dashboard. You should see that a new instance has been created, its instancestate might not yet be Running, if not, wait.

Note the public IPv4 address as we will need to use this to connect to the server.
1. Return to the AWS Learner Lab interface.
2. Run the following, replacing 127.0.0.1 with the public IP address of your instance. This commanduses the vockey | RSA key pair to gain SSH access to the machine.

$ ssh -i ~/.ssh/labsuser.pem ec2-user@127.0.0.1

10

For example:

7 Installing Hextris
Hextris [1] is very simple to install, using an EC2 interface is perhaps overkill for it. It is an entirely client-side/static web application which means we just have to serve the static files.First, we will need to enable serving of static files. We can install and start the httpd service for this.The AMI we have picked uses the yum package manager, so to install httpd we run:
> sudo yum install httpd
Last metadata expiration check: ...
Dependencies resolved
.....
.....
Total download size: 2.3 M
Installed size: 6.9 M
Is this ok [y/N]:

enter y to install
.....
.....
Complete!
> sudo systemctl enable httpd
Created symlink from /etc/systemd/system/multi-user.target.wants/httpd.service to /

usr/lib/systemd/system/httpd.service.
> sudo systemctl start httpd

All files in the /var/www/html directory will now be served when accessed via HTTP. Navigate to thepublic IP address of your EC2 instance in the browser. You should see an “It works!” landing page.Change to the /var/www/html directory and notice that it is currently empty. We need to downloadthe static files to this directory so that they can be served. We can use git for this (though it is not the mostsuited tool), but first git needs to be installed on the instance.
$ sudo yum install git

11

Finally, confirm that we are in the /var/www/html directory.

$ cd /var/www/html

And clone the repository into that directory.

$ sudo git clone https://github.com/Hextris/hextris .

Now if you navigate to the http address of the public IP address (e.g. http://18.208.165.253), youshould be able to see your newly deployed website. Congratulations!
Notice
If you are having timeout issues, one problem could be using https to connect rather than http.

8 Switching to Terraform
For the remainder of the practical we will be using Terraform to provision the same instance we just created.

1. First, please delete any running instances in your AWS account using the AWS Console.
2. Next, navigate to the GitHub Classroom link for this practical provided by your tutor. This will createa new repository where we can work on Terraform.

9 Using Terraform in AWS Learner Labs
We will redeploy our Hextris application using Infrastructure as Code (IaC) to do so. You will need to keepyour lab running for the next steps. (Now is a good time to click start to refresh your 4 hours.)

1. Click on ‘AWS Details’ to display information about the lab.

2. Click on the first ‘Show’ button next to ‘AWS CLI’ which will display a text block starting with[default].

12

http://18.208.165.253

3. Within your repository create a credentials file and copy the contents of the text block into thefile. Do not share this file contents — do not commit it. This file is added to the .gitignore of yourrepository by default.
4. Create a main.tf file in the same directory with the following contents:

» cat main.tf
terraform {

required_providers {
aws = {

source = "hashicorp/aws"
version = "~> 5.0"

}
}

}

provider "aws" {
region = "us-east-1"
shared_credentials_files = ["./credentials"]
default_tags {

tags = {
Environment = "Dev"
Course = "CSSE6400"
StudentID = "<Your Student ID>"

}
}

}

The terraform block specifies the required external dependencies, here we need to use the AWSprovider above version 5.0. The provider block configures the AWS provider, instructing it whichregion to use and how to authenticate (using the credentials file we created). We also include some
tags to add to any resource made by this provider, these are useful for keeping track of resources inthe console.

5. We need to initialise Terraform which will download the required dependencies. This is done withthe terraform init command.
$ terraform init

This command will create a .terraform directory which stores providers and a provider lock file,
.terraform.lock.hcl.

6. To verify that we have setup Terraform correctly, use terraform plan.
$ terraform plan

As we currently have no resources configured, it should find that no changes are required. Notethat this does not ensure our credentials are correctly configured, as Terraform has no reason to tryauthenticating yet.
13

10 Deploying Hextris
First, we will need to create an EC2 instance resource. The AWS provider calls this resource anaws_instance1.Get familiar with the documentation page. Most Terraform providers have reasonable documentation.Reading the argument reference section helps to understand what a resource is capable of.We will start off with the basic information for the resource. Configure it to use a specific AmazonMachine Instance (AMI) and chose the t2.micro size. We will also give it a name so that it is easy to find.Add the following basic resource to main.tf:

» cat main.tf

resource "aws_instance" "hextris-server" {
ami = "ami-0e731c8a588258d0d"
instance_type = "t2.micro"
key_name = "vockey"

tags = {
Name = "hextris"

}
}

To create the server, invoke terraform apply which will first do terraform plan and prompt us toconfirm if we want to apply changes.
$ terraform apply

You should be prompted with something similar to the output below.
Terraform used the selected providers to generate the following execution plan.

Resource actions are indicated with the following symbols:
+ create

Terraform will perform the following actions:

aws_instance.hextris-server will be created
+ resource "aws_instance" "hextris-server" {

+ ami = "ami-0e731c8a588258d0d"
(omitted)
+ instance_type = "t2.micro"
(omitted)
+ tags = {

+ "Name" = "hextris"
}

}

Plan: 1 to add, 0 to change, 0 to destroy.

1https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance

14

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value:

If the plan looks sensible enter yes to enact the changes.
Enter a value: yes

aws_instance.hextris-server: Creating...
aws_instance.hextris-server: Still creating... [10s elapsed]
aws_instance.hextris-server: Still creating... [20s elapsed]
aws_instance.hextris-server: Still creating... [30s elapsed]
aws_instance.hextris-server: Still creating... [40s elapsed]
aws_instance.hextris-server: Creation complete after 47s [id=i-08c92a097ae7c5b18]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

You can now check in the AWS Console that another EC2 instance with the name hextris has beencreated. Now that we have a server, we should try to configure it to serve Hextris. We will use theuser_datafield which configures commands to run when launching the instance. First we need a script to provisionthe server, if we combine all our commands from section 7, we will produce this script:

» cat serve-hextris.sh

#!/bin/bash
yum install -y httpd
systemctl enable httpd
systemctl start httpd

yum install -y git
cd /var/www/html
git clone https://github.com/Hextris/hextris .

Now we can add the following field to our Terraform resource. It uses the Terraform file function toload the contents of a file named serve-hextris.sh relative to the Terraform directory. The contents ofthat file is passed to the user_data field.
user_data = file("./serve-hextris.sh")

If you run the terraform plan command now, you will notice that Terraform has identified that thischange will require creating a new EC2 instance. Where possible, Terraform will try to update a resourcein-place but since this changes how an instance is started, it needs to be replaced. Go ahead and applythe changes.
15

Now, in theory, we should have deployed Hextris to an EC2 instance. But how do we access that in-stance? We could go to the AWS Console and find the public IP address. However, it turns out that Ter-raform already knows the public IP address. In fact, if you open the Terraform state file (terraform.tfstate),you should be able to find it hidden away in there. But we do not want to go hunting through this file allthe time. Instead we will use the output keyword.We can specify certain attributes as ‘output’ attributes. Output attributes are printed to the terminalwhen the module is invoked directly but as we will see later, they can also be used by other Terraformconfiguration files.
» cat main.tf

output "hextris-url" {
value = aws_instance.hextris-server.public_ip

}

This creates a new output attribute, hextris-url, which references the public_ip attribute of our
hextris-server resource. Note that resources in Terraform are addressed by the resource type (aws_instance)followed by the name of the resource (hextris-server).If you plan or apply the changes, it should tell you the public IP address of the instance resource.

$ terraform plan

aws_instance.hextris-server: Refreshing state... [id=i-043a61ff86aa272e0]

Changes to Outputs:
+ hextris-url = "3.82.225.65"

You can apply this plan to save these new output values to the Terraform state, without changing anyreal infrastructure.So let’s try and access that URL, hmm. That is strange. Something has gone wrong.
11 Security Groups
When we setup our EC2 instance using the AWS Console, it helpfully created a new security group for us.We specified that this security group should allow SSH, HTTP, and HTTPS traffic by allowing traffic fromports 22, 80, and 443 respectively. When configuring with Terraform, security groups and their attachmentto EC2 instances are separate resources. Refer back to the Terraform documentation for details or, as isnormally quicker, Google “terraform aws security group”.First, let us create an appropriate security group. Recall that in the AWS Console configuration, ingressSSH access (port 22) and all egress2 traffic was automatically configured and we just added ingress port80. In Terraform the whole state must be configured so we specify two ingress blocks one for HTTP (port80) and one for SSH access (port 22).3 Additionally, we will create egress for all outgoing traffic.

2Ingress and egress in networking just means incoming and outgoing respectively.3We do not actually need SSH access as all the server configuration is done when the machine is provisioned thanks to the
user_data, but we are trying to create a new instance that is identical to the original AWS Console in section 7.

16

https://www.google.com/search?q=terraform+aws+security+group

resource "aws_security_group" "hextris-server" {
name = "hextris-server"
description = "Hextris HTTP and SSH access"

ingress {
from_port = 80
to_port = 80
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

egress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]

}
}

Note the following:
• from_port and to_port are the start and end of a range of ports rather than incoming or outgoing.In this example our range is 80-80.
• protocol set to -1 is a special flag to indicate all protocols.
• Explaining cidr is outside the scope of the course, but the specified block above means to apply toall IP addresses.
You may now apply the changes to create this new security group resource.Next, we will attach the security group to the EC2 instance. Return to theaws_instance.hextrix-serverresource and include the following line:

security_groups = [aws_security_group.hextris-server.name]

Note that EC2 instances can have multiple security groups. Once again notice the structure of resourceidentifiers in AWS.Now apply the changes. If you now try to access via the IP address (the IP address may have changed),you should be able to view the hextris website.

17

12 Tearing Down
One of the important features of Infrastructure as Code (IaC) is all the configuration we just did is stored ina file. This file can, and should be, version controlled and subject to the same quality rules of code files. Italso means that if we want to redeploy Hextris at any point, we can easily just run the IaC to deploy it.To try this out, let us first take everything down. We can do this with:

$ terraform destroy

You should be prompted to confirm that you want to destroy all of the resources in the state. OnceTerraform has finished taking everything down, confirm that you can no longer access the website andthat the AWS console says the instances have been destroyed.Now go ahead and apply the changes to bring everything back:

$ terraform apply

Confirm that this brings the website back exactly as before (with a different IP address). You can nowstart any lab you want and almost instantly spin back up the website you have configured. That is thebeauty of Infrastructure as Code!
Hint: Destroy everything again before you finish.

13 Automated Testing
A quick note about automated testing. As with all the practicals thus far, this practical has automated testsenabled on your repository.From within your repository, you can run the tests locally with:

$.csse6400/bin/unittest.sh

While the emails saying that the tests failed can be annoying, these automated tests allow us to ensurethat everyone is keeping up with the practical content.If fixing the test failures is not too hard, please try to do so. If you are repeatedly not passing thepracticals, we may reach out to ensure that you are not being left behind in the content.
14 Extension

Info
This section is for students who have completed the practical and want to extend their knowledge.
Since CSSE6400 has to run this practical every year sometimes the AMI that we were using is out ofdate or doesnt exist anymore. For this practicle we could instead query amazon for the latest AMI and usethat in our terraform.

18

To do this we introduce a new data source, aws_ami. Data sources fetch or query data from the providerrather than creating something.Add the following to your main.tf file:
data "aws_ami" "latest" {
most_recent = true
owners = ["amazon"]

filter {
name = "name"
values = ["al2023-ami-2023*"]

}

filter {
name = "root-device-type"
values = ["ebs"]

}

filter {
name = "virtualization-type"
values = ["hvm"]

}

filter {
name = "architecture"
values = ["x86_64"]

}
}

This data source will find the latest Amazon Linux 2023 AMI for 64bit which our EC2 is running on.To use the data source we need to change the ami attribute of the aws_instance resource to use thedata source. This is done as so:
resource "aws_instance" "hextris-server" {
ami = data.aws_ami.latest.id
instance_type = "t2.micro"
key_name = "vockey"
security_groups = [aws_security_group.hextris-server.name]
user_data = file("./serve-hextris.sh")

tags = {
Name = "hextris"

}
}

And now if we run terraform plan we will see that it wants to destory and recreate the EC2 instance.This is because the AMI has changed since this prac was first updated for this year!.

19

References
[1] L. Engstrom, G. Finucane, N. Moroze, and M. Yang, “Hextris.” https://github.com/hextris/

hextris/, 2014.
[2] “Aws global infrastructure.” https://aws.amazon.com/about-aws/global-infrastructure/,February 2024.
A AWS Networking Terminology
AWS Regions Regions are the physical locations of AWS data centres. When applying Terraform, thechanges are being made to one region at a time. In our case we specified the region us-east-1. Oftenyou do not need to deploy to more than one region, however, it can help decrease latency and reduce riskfrom a major disaster. Generally, pick a region and stick with it, we have picked us-east-1 because it is theleast expensive.

Figure 1: AWS Regions as of February 2024 [2]

Availability Zones An AWS Region will consist of availability zones, normally named with letters. For ex-ample, the AWS Region located in Sydney, ap-southeast-2has three availability zones: ap-southeast-2a,
ap-southeast-2b, and ap-southeast-2c. An availability zone is a collection of resources which run onseparate power supplies and networks. Essentially minimising the risk that multiple availability zoneswould fail at once.
VPC Virtual Private Clouds, or VPCs, are virtual networks under your control, if you have managed aregular network before it should be familiar. VPCs are contained within one region but are spread acrossmultiple availability zones.

20

https://github.com/hextris/hextris/
https://github.com/hextris/hextris/
https://aws.amazon.com/about-aws/global-infrastructure/

	Getting Started with the Cloud
	This Week
	AWS Academy
	Enrol in AWS Academy
	Exploring the Interface
	AWS EC2
	EC2 AMI
	Instance Settings

	Accessing the Instance
	Installing Hextris
	Switching to Terraform
	Using Terraform in AWS Learner Labs
	Deploying Hextris
	Security Groups
	Tearing Down
	Automated Testing
	Extension
	AWS Networking Terminology

