Last Updated on 2024/03/04

Getting Started with the Cloud Software Architecture

March 13,2024 Brae Webb & Richard Thomas & Evan Hughes

Github Classroom links for this practical can be found on Edstem https://edstem.org/au/
courses/15375/discussion/1753712

1 This Week

This week our goal is to get acquainted with AWS Academy. Throughout the course we will use AWS
Academy to learn how to deploy and manage infrastructure with AWS. Additionally, AWS Academy will
be used to develop the Cloud assignment. Specifically, this week you need to:

« Enrolin

1. AWS Academy Cloud Foundations [73523] course;

1

https://edstem.org/au/courses/15375/discussion/1753712
https://edstem.org/au/courses/15375/discussion/1753712
https://awsacademy.instructure.com/courses/73523

2. AWS Academy Learner Lab [73527] course;
3. AWS Academy Cloud Architecting [73526] course; and
4. AWS Academy Cloud Developing [73525] course.

+ Navigate the AWS Academy interface.
- Enter the AWS Console from an AWS Academy lab.
« Provision an EC2 instance that deploys a simple static website.

We will then start using an Infrastructure as Code tool, specifically, Terraform, to deploy the static web-
site instead of using the AWS Console. Specifically, this week you need to:

+ Authenticate Terraform to use the AWS learner lab.
- Configure a single server website in Terraform and deploy.

- Create a Terraform module for deploying arbitrary single server websites.

2 AWS Academy

AWS Academy is an educational platform to teach you how to use AWS services. In this course, we will be
using it in two ways:

1. The AWS Cloud Foundations, Cloud Architecting, and Cloud Developing courses are supplementary
material to help cement your ability to use AWS. You are encouraged to work your way through at
least the AWS Cloud Foundations and Cloud Architecting courses.

2. The AWS Learner Lab provides access to an environment which will be used in these practicals to
learn AWS. Later Learn Labs will be used to develop your Cloud Infrastructure assignment.

3 Enrolin AWS Academy

1. Set up your AWS Academy account by responding to your email invitation and clicking Get Started.
The email invitation will come from AWS Academy. Check your junk/spam folders.

https://awsacademy.instructure.com/courses/73527
https://awsacademy.instructure.com/courses/73526
https://awsacademy.instructure.com/courses/73525

Course Invitation

Inbox x

AWS Academy <notifications@instructure.com>

tome

<>
i

13:33 (14 minutes ago) Yy «

You've been invited to participate in a class at AWS Academy . The class is called
AWS Academy Learner Lab [73527]. Course role: Student

Name:

Email:

Username: none

You'll need to register with Canvas before you can participate in the class.

3 CANVAS

(@) Press Student Login.

2. Gotohttps://wuw.awsacademy.com/vforcesite/LMS_Login to login.

(b) Use the email address that received the email invitation.

dWS academy
~—7

Student Login

(For students enrolled in a class)
BEDOFEIELASATM Y LTLEEL,

EHEENFEFEXEER

Educator Login

(For educators who have access to the AWS Academy
Portal)

EBEIDTS (AWS Academy # > /S—R— X ILDT H 7
Y rEBELOR) HobohbRFA4 Y LTLTE
T,

FMEEXETR (BBFFAAWS Academy Portalllit
PER)

dWS academy
~—7

Username

Password

B Stay signed in

Forgot Password?

Acceptable Use Policy
Facebook Twitter

< INSTRUCTURE

Meet the Instructure Learning Platform:

Canvas LMS Mastery Connect Elevate Analytics Impact

https://www.awsacademy.com/vforcesite/LMS_Login

4 Exploring the Interface

We will just be looking at the learner lab today, please ask on the Ed Discussion board if you need
help using the supplementary AWS Academy courses.

Enter the learner lab via the following steps.

1. Once you have enrolled in the course, you should see the course page.

— ALLVIEN-LTI13-73527

Home
Account AWS Academy Learner Lab [73527] [T S
Modules
~ 5] View Course Calendar
& Discussions
Dashboard £) View Course Notifications
Grades

Courses

Calendar

&

Inbox

C)

To Do
Nothing for now

Recent Feedback

Nothing for now

AWS academy
=]

History N—

©)

Hels N .
=b AWS Academy Learner Lab provides a long-running sandbox environment for ad hoc exploration of AWS services. Within this class, students will have access to a restricted

set of AWS services. Not all AWS documentation walk-through or sample labs that operate in an AWS Production account will work in the Learner Lab environment. You
will retain access to the AWS resources set up in this environment for the duration of this course. We limit your budget ($100USD), so you should exercise caution to
prevent charges that will deplete your budget too quickly. If you exceed your budget, you will lose access to your environment and lose all of your work.

Each session lasts for 4 hours by default, although you can extend a session to run longer by pressing the start button to reset your session timer. At the end of each
session, any resources you created will persist. However, we automatically shut EC2 instances down. Other resources, such as RDS instances, keep running. Keep in mind
that we do not stop some AWS features, so they can still incur charges between sessions. For example, an Elastic Load Balancer or a NAT. You may wish to delete those
types of resources and recreate them as needed to test your work during a session. You will have access to this environment for the duration of the class that you are
enrolled in. When the class ends, your access to the learner lab will also end.

Educator / Teacher Only
If you are an educator using a Learner Lab in your course, see the Resources area of the AWS Academy Portal home page for the list of supported services for each
Learner Lab class. This sandbox is for educator designed project work, lab exercises, or practice that is created and tested within Learner Lab.

Get Started

2. Navigate to the Modules tab and select the link for “Launch AWS Academy Learner Lab”. You will
need to accept the AWS Learner Lab terms and conditions to be able to launch learner lab. You may
also open and browse the “AWS Academy Learner Lab Student Guide” and “Learn how to effectively
use the AWS Academy Learner Lab” links which cover some of the content of this practical.

Account.

@

Dashboard

Calendar

Inbox

©

History

©)

Help

— ALLVIEN-LTI13-73527 > Modules

Home
Collapse Al

l Modules
Discussions

Grades v Course Welcome and Overview

€ Pre-Course Survey

& AWS Academy Learner Lab Student Guide

~ AWS Academy Learner Lab Compliance and Security Complete All tems

& Learn how to effectively use the AWS Academy Learner Lab

B Module Knowledge Check
= 100pts Score at least 70.0

v AWS Academy Learner Lab

& Launch AWS Academy Learner Lab

+ AWS Academy Learner Lab Resources
& Demo - How to Access Learner Lab

& Demo - General Troubleshooting Tips

& Demo - How to Launch Services through AWS Console

& Learner Lab Activity - CodeWhisperer

3. You should now see the learner lab interface.

The AWS text, near the top left of the window, with the (currently) red circle is the link to open
the AWS console.

You can also see your budget. Note that the budget is not updated in real-time, so avoid creating
multiple resources at once.

The 00:00 is a countdown of hours remaining for your lab. A lab can only remain active for 4
hours, after which it will close, unless you press start lab again before the 4 hours expires. Once
the lab is started, 00: 00 will change to 04:00.

AWS details will become important later but are not needed now.
The README button will re-open the text panel currently on the right of the terminalinterface.

The README text has a lot of important information including what AWS services are available
in the learner labs environment, please read it.

The terminal interface is an environment with the SSH keys required to connect to AWS in-
stances semi-automatically (we will use this today).

— ALLV1EN-LTI13-73527 > Modules > AWS Academy Learner Lab > Launch AWS Academy Learner Lab

AWS @ P Start Lab M End Lab i AWS Details i Readme 'O Reset
®

Account

D

Dashboard

Modules

W_28975 b113194:4 aa
eee_W_2897588Grunet i v .

Discussions

Grades

Learner Lab

Courses

Environment Overview

Calendar Environment Navigation

Access the AWS Management Console

Region restriction
Service usage and other restrictions

Using the terminal in the browser
History Running AWS CLI commands

@ Using the AWS SDK for Python_
Preserving your budget
Accessing EC2 Instances

SSH Access to EC2 Instances

Help

SSH Access from Windows
SSH Access from a Mac

Instructions last updated: 2024-01-18

Environment Overview

This Learner Lab provides a sandbox environment for
ad-hoc exploration of AWS services.

This environment is long-lived. When the session
timer runs to 0:00, the session will end, but any data
and resources that you created in the AWS account
will be retained. If you later launch a new session (for
example, the next day), you will find that your work is
still in the lab environment.

Running EC2 instances will be stopped and then
automatically restarted the next time you start a
session. SageMaker notebook instances will be
stopped, but not restarted the next time you start a
session. SageMaker canvas apps will remain running
unless you delete them.

A IMPORTANT: Monitor your lab budget in the lab
interface above. Whenever you have an active lab
Vo session, the latest known remaining budget

4. Go ahead and start the lab. It will take a few moments to get ready. The red circle will turn yellow
as the lab is starting, and green once it has started. Click on the green circle when it is available. This
will open the AWS Console in a new browser tab. If you end up working for a company which uses
AWS, welcome to your new home.

aws 51 Services | Q paN ® (O] N. Virginia v voclabs/user3080935=R_Thomas @ 0582-6412-3001 v

1]
(]

Console Home Info Reset to default layout ‘ + Add widgets

¢ Recently visited info g = Applications (0) info ‘ Create application ‘ :

Region: US East (N. Virginia)

us-east-1 (Current Region) v ‘ ‘ Q Find applications ‘

1
Name A Description @ Region ¥ Originating account
No recently visited services
Explore one of these commonly visited AWS services. L
No applications
EC2 S3 RDS Lambda Get started by creating an application.
Create application
View all services VA Go to myApplications VA

it Welcome to AWS g i AWS Health info g ¢ Cost and usage info
a

Getting started with Open issues Current month costs Total costs per month

awsz2 ' A
/7 @ O Past 7 days $000 No cost data available.
N Learn the fundamentals and _
4 find valuable information to scheduled ch " hend

get the most out of AWS. cheduied changes Forecasted month end costs

o 0 Upcoming and past 7 days There isn't enough historical data to

Training and forecast your spend

certification [4
iy Other notifications
:@ Learn from AWS experts and O Last month costs

advance your skills and Past7days | 4 A~

knowledge. $000

oy What's new with AWS? [4

\@, Average month costs
- ~ Discover new AWS services, $000 """""""""
' v

features, and Regions.

% Go to AWS Health % Go to Billing and Cost Management %
i Build a solution info g i+ Explore AWS info g i Security info
Start building with simple wizards and automated workflows. Region: US East (N. Virginia)

Innovate faster with AWS for RISE ...

Launch a virtual machine o Start migrating to AWS Accelerate your move to cloud ERP,
With EC2 (2 mins) With AWS MGN (2 mins) . .
improve performance and reliability, an...
Register a domain Host a static web app
A
@ With Route 53 (3 mins) 2 With AWS Amplify Console (2 mins) Amazon SageMaker HyperPod £

Reduce time to train FMs by up to 40%
m Starta devetopment project m Build SQL Server on AWS with purpose-built infrastructure for...

Amazon Web Services (AWS) is an Infrastructure as a Service (laaS) and Software as a Service (SaaS)
provider. They offer a collection of services which are helpful for development. For example, they
offer virtual compute resources, database storage options, and networking to tie it all together. Ser-
vices are offered on a pay as you go model, meaning you only pay for the seconds you use a service.
We will now get acquainted with some simple services offered by AWS.

5 AWSEC2

Today we are going to focus on using AWS's EC2 service. Elastic Compute Cloud (EC2) is the primary
compute service offered by AWS. It allows you to create virtual machines on Amazon'’s infrastructure. You
have full control over this machine and can configure it for whatever purpose you need.

Navigate to the search bar in the top left and find the EC2 service. You might find this interface over-
whelming. It is important to note that since EC2 is one of the primary services offered by AWS, many
smaller services we do not need are bundled into the service.

aws Services | Q ec2

Search results for 'ec2'

Services

Rece Features (57)

éﬂ EC2

Resources | New
Virtual Servers in the Cloud
Documentation (34,458)

Knowledge Articles (608) Top features

nplates Instan
Marketplace (3,322)

Tutorials (21)

Continual vulnerability management at scale

Features

EC2 Dashboard X

Resources EC2 Global view [4 ‘ EC2 Free Tier inf
EC2 Global View obal view [2 @ C ‘ info

Offers for all AWS Regions.

Events
You are using the following Amazon EC2 resources in the US East (N. Virginia) Region:

Console-to-Code P . .
review 0 EC2 free tier offers in use

Instances (running) 0 Auto Scaling Groups 0 Dedicated Hosts 0
v
Instances End of month forecast
Instances Elastic IPs 0 Instances 0 Key pairs 1 ® User: arn:aws:sts::058264123001:assumed-role/voclabs/user3
Instance Types) 080935=R_Thomas is not authorized to perform: freetier:GetFreeT
Load balancers 0 Placement groups 0 Security groups 1 ierUsage on resource: arn:aws:freetier:us-east-1:058264123001:/G
Launch Templates etFreeTierUsage because no identity-based policy allows the freeti
Spot Requests Snapshots 0 Volumes 0 er:GetFreeTierUsage action
Savings Plans Exceeds free tier
Reserved Instances ® User: arn:aws:sts::058264123001:assumed-role/voclabs/user3
Dedicated Hosts Launch instance Service health AWS Health Dashboard [4 [c ‘ 080935=R_Thomas is not authorized to perform: freetier:GetFreeT
To get started, launch an Amazon EC2 instance, which is a virtual server in ferUsage on resource: arn:aws:freetier:us-east-1:058264123001:/G
Capacity Reservations New the cloud etFreeTierUsage because no identity-based policy allows the freeti
Region er:GetFreeTierUsage action
v Images — US East (N. Virginia)
AMls Launch instance | ¥ | Migrate a server [2 View Global EC2 resources
AMI Catalog Zones
Note: Your instances will launch in the US East (N. Virginia) Region
v Elastic Block Store View all AWS Free Tier offers [4
Zone name Zone ID
Volumes

Snapshots Instance alarms View in CloudWatch [4 Us-east-1a usel-azd

feovcl Account attributes &)
Lifecycle Manager us-east-1b usel-az6 —
A0inalarm @00k @ Oinsufficient data
v Network & Security us-east-1c usel-azl Default VPC [2
Security Groups Instances in alarm vpc-02bba0776992b50a0
us-east-1d usel-az2
Elastic IPs Settings
us-east-le usel-az3
Placement Groups Data protection and security
Scheduled events
Key Pairs us-east-1f usel-az5 Zones
Network Interfaces EC2 Serial Console
US East (N. Virginia) Enable additional Zones Default credit specification
v Load Balancing No scheduled events Console experiments
Load Balancers
Target Groups
Trust Stores New Migrate a server Explore AWS X
v Auto Scaling
Save up to 90% on EC2 with Spot Instances
Auto Scaling Groups Use AWS Application Migration Service to simplify and expedite P P
migration from physical, virtual, and cloud infrastructure to AWS. Optimize price-performance by combining EC2 purchase options
Get started with AWS Application Migration Service [4 in a single EC2 ASG. Learn more [4

51 EC2 AMI

First we will need to select an Amazon Machine Image (AMI). An AMl is the template (cookie cutter) which
provides instructions on how an instance should be provisioned. Amazon offers a range of built-in AMls.
There are also community AMIs or you can create your own. As we just want a simple server today, we will
use one of the built-in AMls.

We will use the Amazon Linux 2023 AMI today, it is considered one of the fundamental images. Every
AMI has a unique AMI code, which is ami-0e731c8a588258d0d for the Amazon Linux 2023 AMI.

aws i1 Services | Q Search ® L O © N. Virginia ¥ voclabs/user3080935=R_Thomas @ 0582-6412-3001 ¥

= EC2 Instances L: h an inst:
EC2 > ces > Launch an instance v Summary Instance type X
]
LaunCh an InStance (i Number of instances Info)
Amazon EC2 allows you to create virtual machines, or instances, that run on the AWS Cloud. Quickly get started by 1 Selectan '"Sfa"(e type that meets
following the simple steps below. your computing, memory,
networking, or storage needs.
Software Image (AMI)
Name and tags info Amazon Linux 2023 AMI 2023.3.2...read more Pricing
ami-0e731c83586258d0d Prices shown are for instances
running common operatin
Name Virtual server type (instance type) 9) P) 9
5 systems with no pre-installed
t2.mi . 5
e.g. My Web Server Add additional tags micro software. Prices for instances
running other operating systems
Firewall (security group) g P 95y
) are available on the Amazon EC2
New security group On-Demand Pricing page. You can
v Application and OS Images (Amazon Machine Image) info calculate your estimated costs
Storage (volumes) .)
using the AWS Pricing Calculator.
1 volume(s) - 8 GiB
An AMI is a template that contains the software configuration (operating system, application server, and
applications) required to launch your instance. Search or Browse for AMIs if you don't see what you are looking for
below ® Free tier: In your first year includes X Learn more [2
750 hours of t2.micro (or t3.micro in
Q Search our full catalog including 1000s of application and OS images the Regions in which t2.micro is Instance types
unavailable) instance usage on free
tier AMIs per month, 30 GiB of EBS
Quick Start storage, 2 million 10s, 1 GB of
snapshots, and 100 GB of bandwidth
to the internet.
Amazon mac0S Ubuntu Windows Red Hat SUSE Lii Q
Linux
> Browse more AMls
aws 'Y ubuntu® || B% Microsoft || & RedHat [ad Including AMIs from Cancel Launch instance
Mac sust AWS, Marketplace and
the Community
Review commands
Amazon Machine Image (AMI)
Amazon Linux 2023 AMI Free tier eligible
ami-0e731c8a588258d0d (64-bit (x86), uefi-preferred) / ami-Obbebc09f0a12d4d9 (64-bit (Arm), uefi)
Virtualization: hvm ~ ENA enabled: true Root device type: ebs
Description
Amazon Linux 2023 AMI 2023.3.20240205.2 x86_64 HVM kernel-6.1
Architecture Boot mode AMIID
64-bit (x86) v | uefi-preferred ami-0e731c8a588258d0d
v Instance type info | Get advice
Instance type
t2.micro Free tier eligible v

5.2 Instance Settings

The settings to configure your instance are:
1. Add a ‘Name' tag. Call it the name of your website, e.g. hextris.
Select an appropriate AMI, i.e. Amazon Linux 2023 AMI, ami-0e731c8a588258d0d.

Select a 64-bit (x86) architecture.

ol

The instance type defines the computing, memory, networking and storage capabilities of your in-
stance. We do not need a large server, choose t2.micro.

5. Select the existing vockey (Type: RSA) key pair option.

6. In network settings, choose ‘Create security group’ and select to allow SSH traffic from anywhere,
and HTTPS and HTTP access from the internet.

7. Keep the ‘Configure storage’ settings as default.
8. Do not worry about the ‘Advanced details options for now.

9. You can now launch the instance to start your server.

6 Accessing the Instance

Return to the Instances dashboard. You should see that a new instance has been created, its instance
state might not yet be Running, if not, wait.

AWS % services | Q Search B 4 ® & Nvignav voclabs/user3080935=R_Thomas @ 0582-6412-3001 ¥
a a
EC2 Dashboard x Instances (1/1) info C || connect || instancestate v || Actions v Launch instances ¥
EC2 Global View Q Find Instance by attribute or tag (case-sensitive) Any state v ‘ 1 @
Events Name ,/ v | InstanceID | Instancestate v | Instancetype v | Status check Alarmstatus | Availability Zone v | Public IPv4 DNS v | PubliciPva.. v | ElasticIF
Console-to-Code P
onsole-to-tode Preview hextris i-0572a7c192a26cec @Rumning @ @ t2micro @ Initializing Viewalarms 4+ us-east-1d ec2-3-86-214-179.com... 3.86.214.179 =
v Instances 1 >
Instances
Instance Types
Launch Templates — .
Spot Requests Instance: i-057f2a7c192a26cec (hextris) @ X
Savings Plans Details Status and alarms New Monitoring Security Networking Storage Tags
Reserved Instances
Dedicated Hosts ¥ Instance summary Info
Capacity Reservations Instance ID Public IPv4 address Private IPv4 addresses
New i-057f2a7c192a26¢ec (hextris) 3.86.214.179 [open address [4 172.31.88.93
v Images IPv6 address Instance state Public IPv4 DNS
AMIs - © Running ec2-3-86-214-179.compute-1.amazonaws.com [open address [4
AMI Catalog Hostname type Private IP DNS name (IPv4 only)
1P name: ip-172-31-88-93.ec2.internal ip-172-31-88-93.ec2.internal
v Elastic Block Store
Answer private resource DNS name Instance type Elastic IP addresses
Volumes
1Pva (A) t2.micro -
Snapshots
. Auto-assigned IP address VPCID AWS Compute Optimizer finding
Lifecycle Manager -) .
3.86.214.179 [Public IP] Vpc-02bba0776992b50a0 [4 ® Opt-in to AWS Compute Optimizer for recommendations. |
v Network & Security Learn more [
Security Groups IAM Role Subnet ID Auto Scaling Group name
Elastic IPs - subnet-0b9e0ef6a63826634 [4 -
Placement Groups IMDSV2
Key Pairs Required
Network Interfaces v Instance details info
v Load Balancing Platform AMI ID Monitoring
Amazon Linux (Inferred) ami-0e731c8a588258d0d disabled
Load Balancers
Target Groups Platform details AMI name Termination protection oo

Note the public IPv4 address as we will need to use this to connect to the server.

1. Return to the AWS Learner Lab interface.

2. Run the following, replacing 127.0.0. 1 with the public IP address of your instance. This command
uses the vockey | RSA key pair to gain SSH access to the machine.

$ ssh -i 7/.ssh/labsuser.pem ec2-user@127.0.0.1

10

For example:

eee W 2897588@runweb113237:~% ssh -i ~/.ssh/labsuser.pem ec2-user{i3.95.132.33

The authenticity of host '3.95.132.33 (3.95.132.33)" can't be established.

ECDSA key fingerprint is SHA256:BArUeylQormBYN/FANOCVRNN+HMON8X+Cn@BRN7hNiE.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '3.95.132.33" (ECDSA) to the list of known hosts.
, #

~_ O HHE Amazon Linux 2023
~ee_HHEEHE\
o \ it |
o \#/ https://aws.amazon.com/linux/amazon-1inux-2623
s V't ey
e /
e o S
A
_/m/*
[ec2-user@ip-172-31-80-172 ~]$ []

7 Installing Hextris

Hextris [1] is very simple to install, using an EC2 interface is perhaps overkill for it. It is an entirely client-
side/static web application which means we just have to serve the static files.

First, we will need to enable serving of static files. We can install and start the httpd service for this.
The AMI we have picked uses the yum package manager, so to install httpd we run:

> sudo yum install httpd
Last metadata expiration check:
Dependencies resolved

Total download size: 2.3 M
Installed size: 6.9 M
Is this ok [y/N]:

enter y to install

Complete!

> sudo systemctl enable httpd

Created symlink from /etc/systemd/system/multi-user.target.wants/httpd.service to /
usr/lib/systemd/system/httpd.service.

> sudo systemctl start httpd

All files in the /var/www/html directory will now be served when accessed via HTTP. Navigate to the
public IP address of your EC2 instance in the browser. You should see an “It works!” landing page.

Change to the /var/www/html directory and notice that it is currently empty. We need to download
the static files to this directory so that they can be served. We can use git for this (though it is not the most
suited tool), but first git needs to be installed on the instance.

$ sudo yum install git

l

Finally, confirm that we are in the /var/www/html directory.

$ cd /var/www/html

And clone the repository into that directory.

$ sudo git clone https://github.com/Hextris/hextris .

Now if you navigate to the http address of the public IP address (e.g. http://18.208.165.253), you
should be able to see your newly deployed website. Congratulations!

If you are having timeout issues, one problem could be using https to connect rather than http.

8 Switching to Terraform

For the remainder of the practical we will be using Terraform to provision the same instance we just created.

1. First, please delete any running instances in your AWS account using the AWS Console.

2. Next, navigate to the GitHub Classroom link for this practical provided by your tutor. This will create
a new repository where we can work on Terraform.

9 Using Terraform in AWS Learner Labs

We will redeploy our Hextris application using Infrastructure as Code (laC) to do so. You will need to keep
your lab running for the next steps. (Now is a good time to click start to refresh your 4 hours.)

1. Click on ‘AWS Details' to display information about the lab.
— ALLv1EN-LTI13-73527 > Modules > AWS Academy Learner ... > Launch AWS Academy Learner Lab

AWS Used $0 of $100 01:55 P Start Lab M EndLab i AWS Details i Readme O Reset x
Home

Modules

[ec2-useriip-172-31-88-93 html]$ |:| oc CoudAccess
AWS CLI:

Cloud Labs
Remaining session time: 01:55:16(116 minutes)
Session started at: 2024-02-15T20:09:23-0800
Session to end at: 2024-02-16T00:09:23-0800

Accumulated lab time: 02:04:00 (124 minutes)

No running instance

SSH key
AWS SSO |

AWSAccountld 058264123001

Region us-east-1

2. Click on the first ‘Show’ button next to ‘AWS CLI' which will display a text block starting with [default].

12

http://18.208.165.253

3. Within your repository create a credentials file and copy the contents of the text block into the
file. Do not share this file contents — do not commit it. This file is added to the . gitignore of your
repository by default.

4. Create amain.tf file in the same directory with the following contents:

terraform {
required_providers {

aws = {
source = "hashicorp/aws"
version = "7> 5.0"

provider "aws" {
region = "us-east-1"
shared_credentials_files = ["./credentials"]
default_tags {
tags = {
Environment = "Dev"
Course = "CSSE6400"
StudentID = "<Your Student ID>"

The terraform block specifies the required external dependencies, here we need to use the AWS
provider above version 5.0. The provider block configures the AWS provider, instructing it which
region to use and how to authenticate (using the credentials file we created). We also include some
tags to add to any resource made by this provider, these are useful for keeping track of resources in
the console.

5. We need to initialise Terraform which will download the required dependencies. This is done with
the terraform init command.

$ terraform init

This command will create a . terraform directory which stores providers and a provider lock file,
.terraform.lock.hcl.

6. To verify that we have setup Terraform correctly, use terraform plan.

$ terraform plan

As we currently have no resources configured, it should find that no changes are required. Note
that this does not ensure our credentials are correctly configured, as Terraform has no reason to try
authenticating yet.

13

10 Deploying Hextris

First, we will need to create an EC2 instance resource. The AWS provider calls this resource an aws_instance'.
Get familiar with the documentation page. Most Terraform providers have reasonable documentation.
Reading the argument reference section helps to understand what a resource is capable of.

We will start off with the basic information for the resource. Configure it to use a specific Amazon
Machine Instance (AMI) and chose the t2.micro size. We will also give it a name so that it is easy to find.
Add the following basic resource to main. tf:

» cat main.tf

resource "aws_instance" "hextris-server" {
ami = "ami-0e731c8a588258d04"

instance_type = "t2.micro"
key_name = "vockey"
tags = {
Name = "hextris"
b

To create the server, invoke terraform apply which will first do terraform plan and prompt us to
confirm if we want to apply changes.

$ terraform apply

You should be prompted with something similar to the output below.

Terraform used the selected providers to generate the following execution plan.
Resource actions are indicated with the following symbols:
+ create

Terraform will perform the following actions:
aws_instance.hextris-server will be created

+ resource "aws_instance" "hextris-server" {
+ ami = "ami-0e731c8a588258d04"

(omitted)
+ instance_type = "t2.micro"
(omitted)
+ tags = {
+ "Name" = "hextris"
}

Plan: 1 to add, O to change, O to destroy.

"https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance

14

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value:

If the plan looks sensible enter yes to enact the changes.

Enter a value: yes

aws_instance.hextris-server: Creating...

aws_instance.hextris-server: Still creating... [10s elapsed]
aws_instance.hextris-server: Still creating... [20s elapsed]
aws_instance.hextris-server: Still creating... [30s elapsed]
aws_instance.hextris-server: Still creating... [40s elapsed]

aws_instance.hextris-server: Creation complete after 47s [1d=1-08c92a097ae7c5b18]

Apply complete! Resources: 1 added, O changed, O destroyed.

You can now check in the AWS Console that another EC2 instance with the name hextris has been
created. Now that we have a server, we should try to configure it to serve Hextris. We willuse the user_data
field which configures commands to run when launching the instance. First we need a script to provision
the server, if we combine all our commands from section 7, we will produce this script:

» cat serve-hextris.sh

#!/bin/bash

yum install -y httpd
systemctl enable httpd
systemctl start httpd

yum install -y git
cd /var/www/html
git clone https://github.com/Hextris/hextris .

Now we can add the following field to our Terraform resource. It uses the Terraform file function to
load the contents of a file named serve-hextris. sh relative to the Terraform directory. The contents of
that file is passed to the user_data field.

user_data = file("./serve-hextris.sh")

If you run the terraform plan command now, you will notice that Terraform has identified that this
change will require creating a new EC2 instance. Where possible, Terraform will try to update a resource
in-place but since this changes how an instance is started, it needs to be replaced. Go ahead and apply
the changes.

15

Now, in theory, we should have deployed Hextris to an EC2 instance. But how do we access that in-
stance? We could go to the AWS Console and find the public IP address. However, it turns out that Ter-
raform already knows the public IP address. In fact, if you open the Terraform state file (terraform. tfstate),
you should be able to find it hidden away in there. But we do not want to go hunting through this file all
the time. Instead we will use the output keyword.

We can specify certain attributes as ‘output’ attributes. Output attributes are printed to the terminal
when the module is invoked directly but as we will see later, they can also be used by other Terraform
configuration files.

» cat main.tf

output "hextris-url" {
value = aws_instance.hextris-server.public_ip

3

This creates a new output attribute, hextris-url, which references the public_ip attribute of our
hextris-server resource. Note that resourcesin Terraform are addressed by the resource type (aws_instance)
followed by the name of the resource (hextris-server).

If you plan or apply the changes, it should tell you the public IP address of the instance resource.

$ terraform plan

aws_instance.hextris-server: Refreshing state... [id=i-043a61ff86aa272e0]

Changes to Outputs:
+ hextris-url = "3.82.225.65"

You can apply this plan to save these new output values to the Terraform state, without changing any
real infrastructure.
So let's try and access that URL, hmm. That is strange. Something has gone wrong.

11 Security Groups

When we setup our EC2 instance using the AWS Console, it helpfully created a new security group for us.
We specified that this security group should allow SSH, HTTP, and HTTPS traffic by allowing traffic from
ports 22, 80, and 443 respectively. When configuring with Terraform, security groups and their attachment
to EC2 instances are separate resources. Refer back to the Terraform documentation for details or, as is
normally quicker, Google “terraform aws security group”.

First, let us create an appropriate security group. Recall that in the AWS Console configuration, ingress
SSH access (port 22) and all egress? traffic was automatically configured and we just added ingress port
80. In Terraform the whole state must be configured so we specify two ingress blocks one for HTTP (port
80) and one for SSH access (port 22).> Additionally, we will create egress for all outgoing traffic.

ZIngress and egress in networking just means incoming and outgoing respectively.
3We do not actually need SSH access as all the server configuration is done when the machine is provisioned thanks to the
user_data, but we are trying to create a new instance that is identical to the original AWS Console in section 7.

16

https://www.google.com/search?q=terraform+aws+security+group

resource "aws_security_group" "hextris-server" {

name = "hextris-server"
description = "Hextris HTTP and SSH access"
ingress {

from_port = 80

to_port = 80

protocol = "tcp"

cidr_blocks = ["0.0.0.0/0"]
}

ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
X

egress {
from_port =
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]
+

0

b

Note the following:

- from_port and to_port are the start and end of a range of ports rather than incoming or outgoing.
In this example our range is 80-80.

- protocol set to -1is a special flag to indicate all protocols.

« Explaining cidr is outside the scope of the course, but the specified block above means to apply to
all IP addresses.

You may now apply the changes to create this new security group resource.
Next, we will attach the security group to the EC2 instance. Return to the aws_instance.hextrix-server
resource and include the following line:

security_groups = [aws_security_group.hextris-server.name]

Note that EC2 instances can have multiple security groups. Once again notice the structure of resource
identifiers in AWS.

Now apply the changes. If you now try to access via the IP address (the IP address may have changed),
you should be able to view the hextris website.

17

12 Tearing Down

One of the important features of Infrastructure as Code (laC) is all the configuration we just did is stored in
a file. This file can, and should be, version controlled and subject to the same quality rules of code files. It
also means that if we want to redeploy Hextris at any point, we can easily just run the laC to deploy it.

To try this out, let us first take everything down. We can do this with:

$ terraform destroy

You should be prompted to confirm that you want to destroy all of the resources in the state. Once
Terraform has finished taking everything down, confirm that you can no longer access the website and
that the AWS console says the instances have been destroyed.

Now go ahead and apply the changes to bring everything back:

$ terraform apply

Confirm that this brings the website back exactly as before (with a different IP address). You can now
start any lab you want and almost instantly spin back up the website you have configured. That is the
beauty of Infrastructure as Code!

Hint: Destroy everything again before you finish.

13 Automated Testing
A quick note about automated testing. As with all the practicals thus far, this practical has automated tests

enabled on your repository.
From within your repository, you can run the tests locally with:

$.csseb6400/bin/unittest.sh

While the emails saying that the tests failed can be annoying, these automated tests allow us to ensure
that everyone is keeping up with the practical content.

If fixing the test failures is not too hard, please try to do so. If you are repeatedly not passing the
practicals, we may reach out to ensure that you are not being left behind in the content.

14 Extension

This section is for students who have completed the practical and want to extend their knowledge.

Since CSSE6400 has to run this practical every year sometimes the AMI that we were using is out of
date or doesnt exist anymore. For this practicle we could instead query amazon for the latest AMI and use
that in our terraform.

18

To do this we introduce a new data source, aws_ami. Data sources fetch or query data from the provider

rather than creating something.
Add the following to your main. t£ file:

data "aws_ami" "latest" {
most_recent = true
owners = ["amazon"]

filter {
name = 'name"
values = ["al2023-ami-2023*"]
}
filter {
name = "root-device-type"
values = ["ebs"]
}
filter {
name = "virtualization-type"
values = ["hvm"]
}
filter {
name = "architecture"
values = ["x86_64"]
}

b

This data source will find the latest Amazon Linux 2023 AMI for 64bit which our EC2 is running on.

To use the data source we need to change the ami attribute of the aws_instance resource to use the

data source. This is done as so:

resource "aws_instance" "hextris-server" {
ami = data.aws_ami.latest.id
instance_type = "t2.micro"
key_name = "vockey"
security_groups = [aws_security_group.hextris-server.name]
user_data = file("./serve-hextris.sh")

tags = {
Name =
}
}

"hextris"

And now if we run terraform plan we will see that it wants to destory and recreate the EC2 instance.

This is because the AMI has changed since this prac was first updated for this year!.

19

References

[1] L. Engstrom, G. Finucane, N. Moroze, and M. Yang, “Hextris https://github.com/hextris/
hextris/, 2014.

[2] “Aws global infrastructure’ https://aws.amazon.com/about-aws/global-infrastructure/,
February 2024.

A AWS Networking Terminology

AWS Regions Regions are the physical locations of AWS data centres. When applying Terraform, the
changes are being made to one region at a time. In our case we specified the region us-east-1. Often
you do not need to deploy to more than one region, however, it can help decrease latency and reduce risk
from a major disaster. Generally, pick a region and stick with it, we have picked us-east-1 because it is the
least expensive.

© Regions © Coming soon

Figure 1: AWS Regions as of February 2024 [2]

Availability Zones An AWS Region will consist of availability zones, normally named with letters. For ex-
ample, the AWS Region located in Sydney, ap-southeast-2 has three availability zones: ap-southeast-2a,
ap-southeast-2b, and ap-southeast-2c. An availability zone is a collection of resources which run on
separate power supplies and networks. Essentially minimising the risk that multiple availability zones
would fail at once.

VPC Virtual Private Clouds, or VPCs, are virtual networks under your control, if you have managed a
regular network before it should be familiar. VPCs are contained within one region but are spread across
multiple availability zones.

20

https://github.com/hextris/hextris/
https://github.com/hextris/hextris/
https://aws.amazon.com/about-aws/global-infrastructure/

	Getting Started with the Cloud
	This Week
	AWS Academy
	Enrol in AWS Academy
	Exploring the Interface
	AWS EC2
	EC2 AMI
	Instance Settings

	Accessing the Instance
	Installing Hextris
	Switching to Terraform
	Using Terraform in AWS Learner Labs
	Deploying Hextris
	Security Groups
	Tearing Down
	Automated Testing
	Extension
	AWS Networking Terminology

