
Last Updated on 2024/03/26

Database & Container Deployment Software Architecture
March 20, 2024 Evan Hughes & Brae Webb

Aside
Github Classroom links for this practical can be found on Edstem https://edstem.org/au/
courses/15375/discussion/1753712

1 This Week
This week we are going to deploy our todo application, now called TaskOverflow, on AWS infrastructureusing a hosted database and a single server website.Specifically, this week you need to:

• Deploy an AWS Relational Database Service (RDS) using Terraform.
• Deploy the TaskOverflow container on AWS infrastructure using an ECS cluster.

1

https://edstem.org/au/courses/15375/discussion/1753712
https://edstem.org/au/courses/15375/discussion/1753712


2 Terraform in AWS Learner Labs
Following the steps from the week four practical, start a Learner Lab in AWS Academy. For this practical,you do not need to create any resources using the AWS Console. The console can be used to verify thatTerraform has correctly provisioned resources.

1. Using the GitHub Classroom link for this practical provided by your tutor on edstem, create a repos-itory to work within.
2. Clone the repository or open an environment in GitHub CodeSpaces1

3. Start the Learner Lab then, once the lab has started, click on ‘AWS Details’ to display informationabout the lab.

4. Click on the first ‘Show’ button next to ‘AWS CLI’ which will display a text block starting with[default].
5. Within your repository create a credentials file and copy the contents of the text block into thefile. Do not share this file contents — do not commit it.
6. Create a main.tf file in the your repository with the following contents:

» cat main.tf

terraform {
required_providers {

aws = {
source = "hashicorp/aws"
version = "~> 5.0"

}
}

}

provider "aws" {
region = "us-east-1"
shared_credentials_files = ["./credentials"]

}

1If you are using CodeSpaces, you will need to reinstall Terraform using the same steps as last week.
2



7. We need to initialise terraform which will fetch the required dependencies. This is done with the
terraform init command.

$ terraform init

This command will create a .terraform directory which stores providers and a provider lock file,
.terraform.lock.hcl.

8. To verify that we have setup Terraform correctly, use terraform plan.
$ terraform plan

As we currently have no resources configured, it should find that no changes are required. Notethat this does not ensure our credentials are correctly configured as Terraform has no reason to tryauthenticating yet.
3 Deploying a Database in AWS

Warning
This section manually deploys a PostgreSQL RDS instance, this is intended as a demonstration byyour tutor. You should attempt to deploy your infrastructure using Terraform rather than manually.
To get started let us jump into the lab environment and have a look at AWS RDS which is an AWSmanaged database service. To get to the RDS service either search it or browse Services -> Database ->RDS as shown below.

3



Now we are in the management interface for all our RDS instances. Head to “DB Instances (0/40)” orclick “Databases“ on the left panel.

This page should appear familiar as it is very similar to the AWS EC2 instance page. Let us create a newdatabase by hitting the “Create Database” button.

Warning
In the next section we cannot use the Easy Create option as it tries to create a IAM account which isdisabled in Learner Labs.
We will be creating a standard database so select standard and PostgreSQL. We will use version 14,which is a fairly recent release.

4



For today we are going to use “Free Tier” but in the future, you may wish to explore the different de-ployment options. Please peruse the available different options.

5



Now we need to name our database and create credentials to use when connecting from our applica-tion. Enter memorable credentials as these will be used later.

6



For exploring the process select t2.micro, which should be adaquate for our needs.

7



For storage we will leave all the default options.

In connectivity we need to make sure our instance is publicly available. Usually you do not want to
8



expose your databases publicly and, would instead, have a web server sitting in-front. For our learningpurposes though we are going to expose it directly just like we did with our EC2 instances early in thecourse.When selecting public access as yes we have to create a new Security Group, give this Security Groupa sensible name.

9



We will leave the authentication as password based but we need to expand the “Additional configu-ration”. Fill in the “Initial Database Name” section to be “todo”, this will automatically create the databasethat our todo application expects to connect to.

Now we can click create which will take some time.

10



It may take 10 to 30 minutes to create. The database will also do a initial backup when its created.

When the database has finished being created you can select it to view the configuration and details. Inthis menu we also see the endpoint address which we will need to configure our TaskOverflow applicationto use.

11



4 RDS Database with Terraform
Now would be a good time to browse the documentation for the RDS database in Terraform. You will wantto get practice at reading and understanding Terraform documentation.
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/db_instanceUsing our manual configuration, we can come up with a resource with the appropriate parameters asbelow:

» cat main.tf
locals {
database_username = "administrator"
database_password = "foobarbaz" # this is bad

}

resource "aws_db_instance" "taskoverflow_database" {
allocated_storage = 20
max_allocated_storage = 1000
engine = "postgres"
engine_version = "14"
instance_class = "db.t4g.micro"
db_name = "todo"
username = local.database_username
password = local.database_password
parameter_group_name = "default.postgres14"
skip_final_snapshot = true
vpc_security_group_ids = [aws_security_group.taskoverflow_database.id]
publicly_accessible = true

tags = {

12

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/db_instance


Name = "taskoverflow_database"
}

}

When we created the database using the AWS Console, we needed an appropriate security group sothat we could access the database. We can create the security group using Terraform as well.

» cat main.tf

resource "aws_security_group" "taskoverflow_database" {
name = "taskoverflow_database"
description = "Allow inbound Postgresql traffic"

ingress {
from_port = 5432
to_port = 5432
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

egress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]
ipv6_cidr_blocks = ["::/0"]

}

tags = {
Name = "taskoverflow_database"

}
}

5 Container on AWS
As we mentioned in the Infrastructure as Code notes [1], in this course we will use Docker to configuremachines and Terraform to configure infrastructure. AWS has the ability to deploy Docker containers usinga service known as Elastic Container Service (ECS). We will cover ECS and deploying maunally via EC2 soyou can use the method you feel most comfortable with.For this practical we have made available a Docker container running the TaskOverflow applicationwhich you can use for your AWS deployment. This container is available on GitHub under the CSSE6400organisation:

https://ghcr.io/csse6400/taskoverflow:latestThis container is very similar to what you have been building in the practicals but contains a simple UIand some extra features for the future practicals.2
2If you are interested, the source code is available on GitHub https://github.com/csse6400/practical

13

https://ghcr.io/csse6400/taskoverflow:latest
https://github.com/csse6400/practical


5.1 Setup
Of all the different ways that we can deploy our application, we have decided to offload the database toAWS RDS. This means that we can move all the "state" of our application away from our containerisedenvironment.To begin, we will reuse our Terraform from above for deploying the RDS database. Extend the existinglocal Terraform variables to include the address of the container, such that we have:

» cat main.tf

locals {
image = "ghcr.io/csse6400/taskoverflow:latest"
database_username = "administrator"
database_password = "foobarbaz" # this is bad

}

This already sets up an RDS instance of Postgres and a security group to allow access to it. Now we canrun terraform init and terraform apply to create our database.We have also added a local variable for us to use later. Variables in Terraform can be populated via twomechanisms, they can be in a variables block which can be overridden, or they can be in a locals blockwhich can be used to store values that are used in multiple places.Now we will use ECS to deploy a containerised version of our application.
5.2 [Path A] EC2

Aside
In 2024 we have removed the EC2 pathway from this practical but we have left the deploymentdiagram to allow comparisons to ECS. Please skip to Section 5.3 for the ECS approach.

14



5.3 [Path B] ECS
Aside
This is the recommended path for the course and is the path that we will be suggesting for the future.

15



Congratulations! You have choosen to go down the ECS path which mimics a similar environment asDocker Compose but as an AWS service. This path is new for the course this year so please let your tutorsknow of any issues you have.To start off we need to get some information from our current AWS environment so that we can useit later. Add the below to fetch the IAM role known as LabRole which is a super user in the Learner Labenvironments which can do everything you can do through the UI. We will also be fetching the defaultVPC and the private subnets within that VPC as they are required for the ECS network configuration.
data "aws_iam_role" "lab" {

name = "LabRole"
}

data "aws_vpc" "default" {
default = true

}

data "aws_subnets" "private" {

16



filter {
name = "vpc-id"
values = [data.aws_vpc.default.id]

}
}

In Terraform, the way to retrieve external information is data sources. These are functionally like re-sources but they are not created or destroyed, instead they are populated with attributes from the currentstate. See the below for the minor syntactic difference.
data "aws_iam_role" "lab" {
...

}

resource "aws_db_instance" "database" {
...

}

Now that we have access to the information required, we can create the ECS cluster to host our appli-cation.The first step is to create the ECS cluster which is just a logical grouping of any images. All that is requiredis a name for the new grouping.
» cat main.tf

resource "aws_ecs_cluster" "taskoverflow" {
name = "taskoverflow"

}

On it’s own this cluster is not particularly useful. We need to create a task definition which is a descrip-tion of the container that we want to run. This is where we will define the image that we want to run, theenvironment variables, the port mappings, etc. This is similar to a server entry in Docker Compose.
Warning
The «DEFINITION line cannot have a trailing space. Ensure that one has not been erroneously in-serted.

» cat main.tf

resource "aws_ecs_task_definition" "taskoverflow" {
family = "taskoverflow"
network_mode = "awsvpc"
requires_compatibilities = ["FARGATE"]
cpu = 1024
memory = 2048
execution_role_arn = data.aws_iam_role.lab.arn

17



container_definitions = <<DEFINITION
[
{
"image": "${local.image}",
"cpu": 1024,
"memory": 2048,
"name": "todo",
"networkMode": "awsvpc",
"portMappings": [
{
"containerPort": 6400,
"hostPort": 6400

}
],
"environment": [
{
"name": "SQLALCHEMY_DATABASE_URI",
"value": "postgresql://${local.database_username}:${local.database_password}

@${aws_db_instance.taskoverflow_database.address}:${aws_db_instance.
taskoverflow_database.port}/${aws_db_instance.taskoverflow_database.
db_name}"

}
],
"logConfiguration": {
"logDriver": "awslogs",
"options": {
"awslogs-group": "/taskoverflow/todo",
"awslogs-region": "us-east-1",
"awslogs-stream-prefix": "ecs",
"awslogs-create-group": "true"

}
}

}
]
DEFINITION

}

family A family is similar to the name of the task but it is a name that persists through multiple revisionsof the task.
network_mode This is the network mode that the container will run in, we want to run on regular AWSVPC infrastructure.
requires_compatibilities This is the type of container that we want to run. This can be fargate, EC2, orexternal.
cpu The amount of CPU units that the container will be allocated. 1024 is equivalen to one vCPU.
memory The amount of memory that the container will be allocated, here we’ve chosen 2GB.

18



execution_role_arn The IAM role that the container will run as. Importantly, we have re-used the lab rolewe previously retrieved. This gives the instance full admin permission for our lab environment.
container_definitions This is the definition of the container, it should look very familiar to Docker Com-pose. The only additional feature here is the logConfiguration. This configures our container towrite logs to AWS CloudWatch so that we can see if anything has gone wrong.

Now we have a description of our container as a task. We need a service to run the container on.This is functionally similar to an auto-scaling group from the lecture. We specify how many instances ofthe described container we want and it will provision them. We also specify which ECS cluster and AWSsubnets to run the containers within.
» cat main.tf

resource "aws_ecs_service" "taskoverflow" {
name = "taskoverflow"
cluster = aws_ecs_cluster.taskoverflow.id
task_definition = aws_ecs_task_definition.taskoverflow.arn
desired_count = 1
launch_type = "FARGATE"

network_configuration {
subnets = data.aws_subnets.private.ids
security_groups = [aws_security_group.taskoverflow.id]
assign_public_ip = true

}
}

In the above we refer to a non-existent security group. As always, to be able to access our instancesover the network we need to add a security group policy to enable it.
» cat main.tf

resource "aws_security_group" "taskoverflow" {
name = "taskoverflow"
description = "TaskOverflow Security Group"

ingress {
from_port = 6400
to_port = 6400
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

19



egress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]

}
}

Finally, if we run the appropriate terraform init and terraform apply commands, it should provi-sion an ECS cluster with a service that will then create one ECS container based on our task description.Note that we are doing something a bit weird in this deployment. Normally ECS expects multipleinstances of containers, so it naturally expects a load balancer. This makes it difficult for us to discover thepublic IP of our single instance using Terraform. Instead, you will need to use the AWS Console to find thepublic IP address.This is an opportunity for you to explore the ECS interface and find the task, within the service, withinthe cluster that we have provisioned.
5.4 [Path C] EKS / K8S
This path is not described in the course yet, but we recommend that if you liked the course to have a lookat Kubernetes3 as it is widely used in industry.
6 Hosting TaskOverflow Images
When we last deployed a container on AWS, we used an existing hosted image. Now, we will be developingour own image, so we will need a mechanism to host the image. For this, we will being using an AWS ECR,Docker, and Terraform. AWS ECR is the Elastic Container Registry, it is a container registry like DockerHubor GitHub. We can use it to host our images, using the process below:

1. Use Terraform to create an ECR repository for our image.
2. Use Terraform to build our Docker image.
3. Use Terraform to push our Docker image.
Info
This is a non-standard process. As you may have seen in the DevOps tutorial, we would ordinarilylike our code commits to trigger a CI/CD pipeline which builds the images.If you would like, you can use GitHub actions to build and push your container to the GitHub con-tainer registry and authenticate when you pull the image. However, using ECR simplifies the process,despite the oddities introduced by having a non-persistent ECR repository.

3https://kubernetes.io/

20

https://kubernetes.io/
https://kubernetes.io/


Getting Started

1. Using the GitHub Classroom link for this practical provided by your tutor on edstem, create a repos-itory to work within.
2. Install Terraform if not already installed, as it will be required again this week.
3. Start your learner lab and copy the AWS Learner Lab credentials into a credentials file in the root ofthe repository.

What’s New We are starting again with our todo application from roughly where we left off in the week 3practical. We’ve added a new directory todo/app that has the static HTML files for the TaskOverflow web-site and added a route to serve these files. We have also created a production version of the server that usesgunicorn, the bin directory is used by this image. Our original Docker image is now in Dockerfile.dev.
We will setup our initial Terraform configuration. Note that now we introduce a new required provider.This provider is for Docker.
» cat main.tf

terraform {
required_providers {

aws = {
source = "hashicorp/aws"
version = "~> 5.0"

}
docker = {

source = "kreuzwerker/docker"
version = "3.0.2"

}
}

}

provider "aws" {
region = "us-east-1"
shared_credentials_files = ["./credentials"]

}

As with our AWS provider, when we initially configure the provider, we want to authenticate so that wecan later push to our registry using the Docker provider. We will use the aws_ecr_authorization_tokendata block to get appropriate ECR credentials for Docker.
» cat main.tf

data "aws_ecr_authorization_token" "ecr_token" {}

provider "docker" {
registry_auth {
address = data.aws_ecr_authorization_token.ecr_token.proxy_endpoint
username = data.aws_ecr_authorization_token.ecr_token.user_name

21



password = data.aws_ecr_authorization_token.ecr_token.password
}

}

We need to use Terraform to create an ECR repository to push to.

» cat main.tf

resource "aws_ecr_repository" "taskoverflow" {
name = "taskoverflow"

}

The URL for containers in the ECR following the format below:
{ACCOUNT_ID}.dkr.ecr.{REGION}.amazonaws.com/{REPOSITORY_NAME}Remember — to push to a container registry we need a local container whose tag matches the remoteURL. We could then create and push the contianer locally with:

docker build -t {ACCOUNT_ID}.dkr.ecr.{REGION}.amazonaws.com/{REPOSITORY_NAME} .
docker push {ACCOUNT_ID}.dkr.ecr.{REGION}.amazonaws.com/{REPOSITORY_NAME}

However, it would be easier if we could build and push this container from within Terraform. We canuse the Docker provider for this.

» cat image.tf

resource "docker_image" "taskoverflow" {
name = "${aws_ecr_repository.taskoverflow.repository_url}:latest"
build {
context = "."

}
}

resource "docker_registry_image" "taskoverflow" {
name = docker_image.taskoverflow.name

}

Notice that we are able to utilize the output of the ECR repository as the URL which resolves to thecorrect URL for the image.
References
[1] B. Webb, “Infrastructure as code,” March 2022. https://csse6400.uqcloud.net/handouts/iac.

pdf.

22

{ACCOUNT_ID}.dkr.ecr.{REGION}.amazonaws.com/{REPOSITORY_NAME}
https://csse6400.uqcloud.net/handouts/iac.pdf
https://csse6400.uqcloud.net/handouts/iac.pdf

	Database & Container Deployment
	This Week
	Terraform in AWS Learner Labs
	Deploying a Database in AWS
	RDS Database with Terraform
	Container on AWS
	Setup
	[Path A] EC2
	[Path B] ECS
	[Path C] EKS / K8S

	Hosting TaskOverflow Images


