Last Updated on 2024/03/26

Database & Container Deployment Software Architecture

March 20, 2024 Evan Hughes & Brae Webb

Github Classroom links for this practical can be found on Edstem https://edstem.org/au/
courses/15375/discussion/1753712

1 This Week

This week we are going to deploy our todo application, now called TaskOverflow, on AWS infrastructure
using a hosted database and a single server website.
Specifically, this week you need to:

+ Deploy an AWS Relational Database Service (RDS) using Terraform.

+ Deploy the TaskOverflow container on AWS infrastructure using an ECS cluster.

1

https://edstem.org/au/courses/15375/discussion/1753712
https://edstem.org/au/courses/15375/discussion/1753712

2 Terraform in AWS Learner Labs

Following the steps from the week four practical, start a Learner Lab in AWS Academy. For this practical,
you do not need to create any resources using the AWS Console. The console can be used to verify that
Terraform has correctly provisioned resources.

1. Using the GitHub Classroom link for this practical provided by your tutor on edstem, create a repos-
itory to work within.

2. Clone the repository or open an environment in GitHub CodeSpaces'

3. Start the Learner Lab then, once the lab has started, click on ‘AWS Details' to display information
about the lab.

= ALLFv1-10909 > Modules > Learner Lab Foundation Services > Learner Lab - Foundational Services

4. Click on the first ‘Show’ button next to ‘AWS CLI' which will display a text block starting with [default].

5. Within your repository create a credentials file and copy the contents of the text block into the
file. Do not share this file contents — do not commiit it.

6. Create amain.tf file in the your repository with the following contents:

» cat main.tf

terraform {
required_providers {

aws = {
source = "hashicorp/aws"
version = "7> 5.0"
b
}
}
provider "aws" {
region = "us-east-1"
shared_credentials_files = ["./credentials']
}

'If you are using CodeSpaces, you will need to reinstall Terraform using the same steps as last week.

7. We need to initialise terraform which will fetch the required dependencies. This is done with the
terraform init command.

$ terraform init

This command will create a . terraform directory which stores providers and a provider lock file,
.terraform.lock.hcl.

8. To verify that we have setup Terraform correctly, use terraform plan.

$ terraform plan

As we currently have no resources configured, it should find that no changes are required. Note
that this does not ensure our credentials are correctly configured as Terraform has no reason to try
authenticating yet.

3 Deploying a Database in AWS

This section manually deploys a PostgreSQL RDS instance, this is intended as a demonstration by
your tutor. You should attempt to deploy your infrastructure using Terraform rather than manually.

To get started let us jump into the lab environment and have a look at AWS RDS which is an AWS
managed database service. To get to the RDS service either search it or browse Services -> Database ->
RDS as shown below.

aws Q Search for services, features, blogs, di [Alt+S] 2] paN ® N. Virginia ¥ voclabs/user1718566=Test_Student @ 7287-7499-1353 ¥

Application Integration DynamoDB

= AR&VR Managed NoSQL Database

AWS Cost Management ElastiCache
=ea Blockchain In-Memory Cache
il Business Applications
Amazon Keyspaces
Compute Serverless Cassandra-compatible database
P!

Containers
Amazon MemoryDB for Redis

(&) Customer Enablement Fully managed, Redis-compatible, in-memory database service

Neptune

Developer Tools Fast, reliable graph database built for the cloud

End User Computing
Amazon QLDB
[0 Front-end Web & Mobile Fully managed ledger database

£ Game Development
RDS
% Internet of Things Managed Relational Database Service
Machine Learning
Amazon Timestream
‘Amazon Timestream is a fast, scalable, and serverless time series database for loT
54 Media Services and operational applications.

Management & Governance

»> Migration & Transfer

Feedback (s Vkina & Cantant Fiivaty tens Cookie preferences

Now we are in the management interface for all our RDS instances. Head to “DB Instances (0/40)" or
click “Databases” on the left panel.

aws 822 services | Q. Search for sei features, : B3] Pa¥ ® N. Virginia v voclabs/user1718566=Test_Student @ 7287-7499-1353 ¥
Amazon RDS X
Resources ‘ Refresh Recommended for you
Dashboard S
Databases

Time-Series Tables in

You are using the following Amazon RDS resources in the US East (N.
PostgresQL

Query Editor Virginia) region (used/quota)

Step-by-sltep guide to design

Performance insights DB Instances (0/40) Parameter groups (0) . h .
high-performance time series
Snapshots Allocated storage (0 TB/100 Default (0) data tables on Amazon RDS
Automated backups TB) Custom (0/100) for PostgreSQL. Learn more
. i Click here to increase DB Option groups (0)
eserved instances instances limit Default (0) Implementing Cross-Region
i DB Clust 0/40
Proxies usters (0/40) Custom (0/20) DR
R d inst 0/40 -
eserved instances (0/40) Subnet groups (0/50) Lealjn hoYN to set up Cross
Snapshots (0) Supported platforms VPC Region disaster recovery (DR)
Subnet groups Manual (0/100) for Aurora PostgreSQL using
Default network an Aurora global database
Parameter groups Automated (0) vpc-07f8e8ea0408a9db9 spanning multiple Regions.
Recent events (0) Learn more

Option groups
Event subscriptions (0/20)

Custom Availability Z
ustom Availability Zones Amazon RDS Backup and

Custom engine versions Restore using AWS Backup

Learn how to backup and
Create database restore Amazon RDS

databases using AWS Backup

in just 10 minutes. Learn more

Events

Event subscriptions Amazon Relational Database Service (RDS) makes it easy to set up,
operate, and scale a relational database in the cloud.

Build RDS Operational Tasks

Feedback English (US) » Privacy Terms Cookie preferences

This page should appear familiar as it is very similar to the AWS EC2 instance page. Let us create a new
database by hitting the “Create Database” button.

RDS Databases

Databases @ Group resources ‘ C ‘ Restore from S3 | Create database

Q
1 &

DB identifier Y Role ¥ Engine ¥ Region & AZ ¥V Size ¥V Status ¥ CPU

No instances found

In the next section we cannot use the Easy Create option as it tries to create a IAM account which is
disabled in Learner Labs.

We will be creating a standard database so select standard and PostgreSQL. We will use version 14,
which is a fairly recent release.

Choose a database creation method info

© Standard create Easy create
You set all of the configuration options, including ones Use recommended best-practice configurations. Some
for availability, security, backups, and maintenance. configuration options can be changed after the

database is created.

Engine options

Engine type Info

Aurora (MySQL Aurora (PostgreSQL MySQL
Compatible) Compatible)
+ &
2> 2 &
MariaDB (o] PostgreSQL Oracle

@ ORACLE

Microsoft SQL Server

;ﬁ §5If: Server

Engine Version

PostgreSQL 14.6-R1 v

For today we are going to use “Free Tier” but in the future, you may wish to explore the different de-
ployment options. Please peruse the available different options.

Templates

Choose a sample template to meet your use case.

Production Dev/Test O Free tier

Use defaults for high availability This instance is intended for Use RDS Free Tier to develop

and fast, consistent development use outside of a new applications, test existing

performance. production environment. applications, or gain hands-on
experience with Amazon RDS.
Info

Availability and durability

Deployment options Info
The deployment options below are limited to those supported by the engine you selected above.

Now we need to name our database and create credentials to use when connecting from our applica-
tion. Enter memorable credentials as these will be used later.

Settings

DB instance identifier Info

Type a name for your DB instance. The name must be unique across all DB instances owned by your AWS account in the current AWS
Region.

todo

The DB instance identifier is case-insensitive, but is stored as all lowercase (as in "mydbinstance"). Constraints: 1 to 60 alphanumeric
characters or hyphens. First character must be a letter. Can't contain two consecutive hyphens. Can't end with a hyphen.

¥ Credentials Settings

Master username Info
Type a login ID for the master user of your DB instance.
todo
1 to 16 alphanumeric characters. First character must be a letter.
Manage master credentials in AWS Secrets Manager

Manage master user credentials in Secrets Manager. RDS can generate a password for you and
manage it throughout its lifecycle.

@ If you manage the master user credentials in Secrets Manager, some RDS features aren't supported.
Learn more [

Auto generate a password
Amazon RDS can generate a password for you, or you can specify your own password.

Master password Info

Constraints: At least 8 printable ASCII characters. Can't contain any of the following: / (slash), ‘(single quote), "(double quote) and @
(at sign).

Confirm master password Info

For exploring the process select t2.micro, which should be adaquate for our needs.

Instance configuration

The DB instance configuration options below are limited to those supported by the engine that you selected above.

DB instance class Info

© Burstable classes (includes t classes)

db.t4g.micro v
2vCPUs 1 GIBRAM Network: 2,085 Mbps

(P Include previous generation classes

For storage we will leave all the default options.

Storage

Storage type Info
General Purpose 55D (gp2) v

Baseline performance determined by volume size

Allocated storage

20 ~ GiB

(Minimum: 20 GIB. Maximum: 16,384 GIB) Higher allocated storage may improve |IOPS performance.

(@ You might see better baseline performance with your selected volume size by specifying General
Purpose S5D storage. Learn more about using Provisioned IOPS storage for consistent performance.

[

Storage autoscaling info
Provides dynamic scaling support for your database’s storage based on your application’s needs.

Enable storage autoscaling

Enabling this feature will allow the storage to increase once the specified threshold is
exceeded.

Maximum storage threshold Info
Charges will apply when your database autoscales to the specified threshold

GiB

<

1000

Minimum: 21 GIB. Maximum: 16,384 GIiB

In connectivity we need to make sure our instance is publicly available. Usually you do not want to

8

expose your databases publicly and, would instead, have a web server sitting in-front. For our learning
purposes though we are going to expose it directly just like we did with our EC2 instances early in the
course.

When selecting public access as yes we have to create a new Security Group, give this Security Group
a sensible name.

DB subnet group Info

Choose the DB subnet group. The DB subnet group defines which subnets and IP ranges the DB instance can use in the VPC that you
selected.

default v

Public access Info

O Yes

RDS assigns a public IP address to the database. Amazon EC2 instances and other resources outside of the VPC can connect to
your database. Resources inside the VPC can also connect to the database. Choose one or more VPC security groups that specify
which resources can connect to the database.

No

RDS doesn't assign a public IP address to the database. Only Amazon EC2 instances and other resources inside the VPC can
connect to your database. Choose one or more VPC security groups that specify which resources can connect to the database.

VPC security group (firewall) Info
Choose one or more VPC security groups to allow access to your database. Make sure that the security group rules allow the
appropriate incoming traffic.

© Choose existing Create new
Choose existing VPC security groups Create new VPC security group

Existing VPC security groups

v
default X
Availability Zone Info
No preference v

RDS Proxy
RDS Proxy is a fully managed, highly available database proxy that improves application scalability, resiliency, and security.

Create an RDS Proxy Info
RDS automatically creates an IAM role and a Secrets Manager secret for the proxy. RDS Proxy has additional costs. For more
information, see Amazon RDS Proxy pricing [4.

Certificate authority - optional Info

Using a server certificate provides an extra layer of security by validating that the connection is being made to an Amazon database.
It does so by checking the server certificate that is automatically installed on all databases that you provision.

rds-ca-2019 (default) v

If you don't select a certificate authority, RDS chooses one for you.

¥ Additional configuration

Database port Info
TCP/IP port that the database will use for application connections.

5432

<>

We will leave the authentication as password based but we need to expand the “Additional configu-
ration”. Fill in the “Initial Database Name” section to be “todo’, this will automatically create the database
that our todo application expects to connect to.

v Additional configuration

Database options, encryption turned off, backup turned off, backtrack turned off, maintenance, CloudWatch Logs, delete
protection turned off.

Database options

Initial database name Info

todo

If you do not specify a database name, Amazon RDS does not create a database.

DB parameter group Info

default.postgres14 v

Option group Info

Backup

Enable automated backups
Creates a point-in-time snapshot of your database

Encryption

Enable encryption
Choose to encrypt the given instance. Master key IDs and aliases appear in the list after they have been created using the AWS

Key Management Service console. Info

Log exports
Select the log types to publish to Amazon CloudWatch Logs

PostgreSQL log
Upgrade log

IAM role
The following service-linked role is used for publishing logs to CloudWatch Logs.

RDS service-linked role

Now we can click create which will take some time.

10

Estimated monthly costs

The Amazon RDS Free Tier is available to you for 12 months. Each calendar month, the free tier will allow you to
use the Amazon RDS resources listed below for free:

« 750 hrs of Amazon RDS in a Single-AZ db.t2.micro Instance.

+ 20 GB of General Purpose Storage (S5D).

« 20 GB for automated backup storage and any user-initiated DB Snapshots.
Learn more about AWS Free Tier. [2

When your free usage expires or if your application use exceeds the free usage tiers, you simply pay standard,
pay-as-you-go service rates as described in the Amazon RDS Pricing page. [4

(® You are responsible for ensuring that you have all of the necessary rights for any third-party products or
services that you use with AWS services.

It may take 10 to 30 minutes to create. The database will also do a initial backup when its created.

Databases @ Group resources Restore from S3 Create database

Q. todo X 1 &

DB identifier A Role ¥ Engine ¥ Region & AZ ¥ Size v Status ¥ Actions v

todo Instance PostgreSQL - db.t4g.micro @ Creating

When the database has finished being created you can select it to view the configuration and details. In
this menu we also see the endpoint address which we will need to configure our TaskOverflow application
to use.

l

RDS Databases todo

todo Modify ‘ ’ Actions ¥
Summary
DB identifier CPU Status Class
todo - © Available db.t4g.micro
Role Current activity Engine Region & AZ
Instance I 0 Connections PostgreSQL us-east-1d
Connectivity & security Monitoring Logs & events Configuration Maintenance & backups Tags

Connectivity & security

Endpoint & port Networking Security

Endpoint Availability Zone VPC security groups
todo.csfd64hdqthj.us- us-east-1d default (sg-08d05b608beff2f02)
east-1.rds.amazonaws.com @© Active

4 RDS Database with Terraform

Now would be a good time to browse the documentation for the RDS database in Terraform. You will want
to get practice at reading and understanding Terraform documentation.
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/db_instance

Using our manual configuration, we can come up with a resource with the appropriate parameters as
below:

N ~rat mAaan +F

locals {
database_username = "administrator"
database_password = "foobarbaz" # this is bad
}

resource "aws_db_instance" "taskoverflow_database" {
allocated_storage = 20
max_allocated_storage = 1000

engine = "postgres"

engine_version = "14"
instance_class = "db.t4g.micro"
db_name = "todo"

username = local.database_username

password = local.database_password

parameter_group_name = "default.postgresl4"

skip_final_snapshot = true

vpc_security_group_ids = [aws_security_group.taskoverflow_database.id]
publicly_accessible = true

tags = {

12

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/db_instance

Name = "taskoverflow_database"
+
}

When we created the database using the AWS Console, we needed an appropriate security group so
that we could access the database. We can create the security group using Terraform as well.

» cat main.tf

resource "aws_security_group" "taskoverflow_database" {

name = '"taskoverflow_database"
description = "Allow inbound Postgresql traffic"
ingress {

from_port = 5432

to_port = 5432

protocol = "tcp"

cidr_blocks = ["0.0.0.0/0"]
X

egress {
from_port =
to_port = 0O
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]
ipv6_cidr_blocks = ["::/0"]
}

0

tags = {

Name "taskoverflow_database"

b
}

5 Container on AWS

As we mentioned in the Infrastructure as Code notes [1], in this course we will use Docker to configure
machines and Terraform to configure infrastructure. AWS has the ability to deploy Docker containers using
a service known as Elastic Container Service (ECS). We will cover ECS and deploying maunally via EC2 so
you can use the method you feel most comfortable with.

For this practical we have made available a Docker container running the TaskOverflow application
which you can use for your AWS deployment. This container is available on GitHub under the CSSE6400
organisation:

https://ghcr.io/csse6400/taskoverflow:latest

This container is very similar to what you have been building in the practicals but contains a simple Ul
and some extra features for the future practicals.?

2If you are interested, the source code is available on GitHub https://github.com/csse6400/practical

13

https://ghcr.io/csse6400/taskoverflow:latest
https://github.com/csse6400/practical

5.1 Setup

Of all the different ways that we can deploy our application, we have decided to offload the database to
AWS RDS. This means that we can move all the "state” of our application away from our containerised
environment.

To begin, we will reuse our Terraform from above for deploying the RDS database. Extend the existing
local Terraform variables to include the address of the container, such that we have:

» cat main.tf

locals {
image = "ghcr.io/csse6400/taskoverflow:latest"
database_username = "administrator"
database_password = "foobarbaz" # this is bad
i

This already sets up an RDS instance of Postgres and a security group to allow access to it. Now we can
run terraform init and terraform apply to create our database.

We have also added a local variable for us to use later. Variables in Terraform can be populated via two
mechanisms, they can be in a variables block which can be overridden, or they can be in a locals block
which can be used to store values that are used in multiple places.

Now we will use ECS to deploy a containerised version of our application.

5.2 [Path A] EC2

In 2024 we have removed the EC2 pathway from this practical but we have left the deployment
diagram to allow comparisons to ECS. Please skip to Section 5.3 for the ECS approach.

14

TaskOverflow on EC2 (Deployment Diagram)

aws
Amazon Web Services

4 Amazon RDS h

K__72
&

[Postgres 14 | db.t4g.micro | Public IP]

Amazon EC2
'—.I /Postg reSQL - TaskOverflow)
| Q PostgreSQLl
[Amazon Linux 2 | t2.micro | Public IP] 8
)
Todo
[Flask/Python] Connects to
o [TCP/5432] » Todo Database
Web application for [Stores the todo items for
TaskOverflow including TaskOverflow.]
static resources. _)
- J

5.3 [Path B] ECS

This is the recommended path for the course and is the path that we will be suggesting for the future.

15

TaskOverflow on ECS (Deployment Diagram)

aws
Amazon Web Services

us-east-1

Amazon ECS

@

[TaskOverflow Cluster]

TaskOverflow Service

n—
0— e
u—

Amazon RDS)

[Desired count: 1 | Task definition: taskoverflow:latest]

R
&

[Postgres 14 | db.t4g.micro | Public IP]

Fargate

PostgreSQL - TaskOverflow)

[1 vCPU | 2GB RAM] PostgreSQL
Todo E@
a

)
u_
O— Connects to
[TCP/5432]

» Todo Database
[Stores the todo items for
TaskOverflow.]

[Flask/Python | 1 vCPU | 2GB RAM]

Web application for
TaskOverflow including
static resources. J

Leiend

Congratulations! You have choosen to go down the ECS path which mimics a similar environment as
Docker Compose but as an AWS service. This path is new for the course this year so please let your tutors
know of any issues you have.

To start off we need to get some information from our current AWS environment so that we can use
it later. Add the below to fetch the IAM role known as LabRole which is a super user in the Learner Lab
environments which can do everything you can do through the Ul. We will also be fetching the default
VPC and the private subnets within that VPC as they are required for the ECS network configuration.

data "aws_iam_role" "lab" {
name = "LabRole"

data "aws_vpc" "default" {
default = true

}

data "aws_subnets" '"private" {

16

filter {
name = "vpc-id"
values = [data.aws_vpc.default.id]

In Terraform, the way to retrieve external information is data sources. These are functionally like re-
sources but they are not created or destroyed, instead they are populated with attributes from the current
state. See the below for the minor syntactic difference.

data "aws_iam_role" "lab" {

resource "aws_db_instance" "database" {

Now that we have access to the information required, we can create the ECS cluster to host our appli-
cation.

The first step is to create the ECS cluster which is just a logical grouping of any images. All that is required
is a name for the new grouping.

» cat main.tf

resource "aws_ecs_cluster" "taskoverflow" {
name = "taskoverflow"

On it's own this cluster is not particularly useful. We need to create a task definition which is a descrip-
tion of the container that we want to run. This is where we will define the image that we want to run, the
environment variables, the port mappings, etc. This is similar to a server entry in Docker Compose.

The «DEFINITION line cannot have a trailing space. Ensure that one has not been erroneously in-
serted.

» cat main.tf

resource "aws_ecs_task_definition" "taskoverflow" {
family = "taskoverflow"
network_mode = "awsvpc"
requires_compatibilities = ["FARGATE"]
cpu = 1024
memory = 2048
execution_role_arn = data.aws_iam_role.lab.arn

17

container_definitions = <<DEFINITION
L
{
"image": "${local.imagel}",
"cpu": 1024,
"memory": 2048,
"name": "todo",
"networkMode": "awsvpc",
"portMappings": [
{
"containerPort": 6400,
"hostPort": 6400
}
1
"environment": [
{
"name": "SQLALCHEMY_DATABASE_URI",
"value": "postgresql://${local.database_username}:${local.database_password}
@${aws_db_instance.taskoverflow_database.address}:${aws_db_instance.
taskoverflow_database.port}/${aws_db_instance.taskoverflow_database.
db_namel}"
b
P
"logConfiguration": {
"logDriver": "awslogs",
"options": {
"awslogs-group": "/taskoverflow/todo",
"awslogs-region": '"us-east-1",
"awslogs-stream-prefix": "ecs",
"awslogs-create-group": "true"
}
}
}
]
DEFINITION

b

family A family is similar to the name of the task but it is a name that persists through multiple revisions
of the task.

network_mode This is the network mode that the container will run in, we want to run on regular AWS
VPC infrastructure.

requires_compatibilities This is the type of container that we want to run. This can be fargate, EC2, or
external.

cpu The amount of CPU units that the container will be allocated. 1024 is equivalen to one vCPU.

memory The amount of memory that the container will be allocated, here we've chosen 2GB.

18

execution_role_arn The IAM role that the container will run as. Importantly, we have re-used the lab role
we previously retrieved. This gives the instance full admin permission for our lab environment.

container_definitions This is the definition of the container, it should look very familiar to Docker Com-
pose. The only additional feature here is the logConfiguration. This configures our container to
write logs to AWS CloudWatch so that we can see if anything has gone wrong.

Now we have a description of our container as a task. We need a service to run the container on.
This is functionally similar to an auto-scaling group from the lecture. We specify how many instances of
the described container we want and it will provision them. We also specify which ECS cluster and AWS
subnets to run the containers within.

» cat main.tf

resource "aws_ecs_service" "taskoverflow" {
name = "taskoverflow"
cluster = aws_ecs_cluster.taskoverflow.id
task_definition = aws_ecs_task_definition.taskoverflow.arn
desired_count = 1
launch_type = "FARGATE"

network_configuration {
subnets = data.aws_subnets.private.ids
security_groups = [aws_security_group.taskoverflow.id]
assign_public_ip = true

}

In the above we refer to a non-existent security group. As always, to be able to access our instances
over the network we need to add a security group policy to enable it.

» cat main.tf

resource "aws_security_group" "taskoverflow" {

name = "taskoverflow"
description = "TaskOverflow Security Group"
ingress {

from_port = 6400

to_port = 6400

protocol = "tcp"

cidr_blocks = ["0.0.0.0/0"]
}

ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
b

19

egress {
from_port =
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]
b

0

Finally, if we run the appropriate terraform initand terraform apply commands, it should provi-
sion an ECS cluster with a service that will then create one ECS container based on our task description.

Note that we are doing something a bit weird in this deployment. Normally ECS expects multiple
instances of containers, so it naturally expects a load balancer. This makes it difficult for us to discover the
public IP of our single instance using Terraform. Instead, you will need to use the AWS Console to find the
public IP address.

This is an opportunity for you to explore the ECS interface and find the task, within the service, within
the cluster that we have provisioned.

5.4 [Path C] EKS/K8S

This path is not described in the course yet, but we recommend that if you liked the course to have a look
at Kubernetes? as it is widely used in industry.

6 Hosting TaskOverflow Images

When we last deployed a container on AWS, we used an existing hosted image. Now, we will be developing
our own image, so we will need a mechanism to host the image. For this, we will being using an AWS ECR,
Docker, and Terraform. AWS ECR is the Elastic Container Registry, it is a container registry like DockerHub
or GitHub. We can use it to host our images, using the process below:

1. Use Terraform to create an ECR repository for our image.
2. Use Terraform to build our Docker image.

3. Use Terraform to push our Docker image.

This is a non-standard process. As you may have seen in the DevOps tutorial, we would ordinarily
like our code commits to trigger a CI/CD pipeline which builds the images.

If you would like, you can use GitHub actions to build and push your container to the GitHub con-
tainer registry and authenticate when you pull the image. However, using ECR simplifies the process,
despite the oddities introduced by having a non-persistent ECR repository.

3https://kubernetes.io/

20

https://kubernetes.io/
https://kubernetes.io/

Getting Started

1. Using the GitHub Classroom link for this practical provided by your tutor on edstem, create a repos-
itory to work within.

2. Install Terraform if not already installed, as it will be required again this week.

3. Start your learner lab and copy the AWS Learner Lab credentials into a credentials file in the root of
the repository.

What's New We are starting again with our todo application from roughly where we left off in the week 3
practical. We've added a new directory todo/app that has the static HTML files for the TaskOverflow web-
site and added aroute to serve these files. We have also created a production version of the server that uses
gunicorn, the bin directory is used by this image. Our original Docker image is now in Dockerfile.dev.

We will setup our initial Terraform configuration. Note that now we introduce a new required provider.
This provider is for Docker.

» cat main.tf

terraform {
required_providers {

aws = {
source = "hashicorp/aws"
version = "7> 5.0"

}

docker = {
source = "kreuzwerker/docker"
version = "3.0.2"

+

provider "aws" {
region = "us-east-1"
shared_credentials_files = ["./credentials"]

As with our AWS provider, when we initially configure the provider, we want to authenticate so that we
can later push to our registry using the Docker provider. We will use the aws_ecr_authorization_token
data block to get appropriate ECR credentials for Docker.

» cat main.tf

data "aws_ecr_authorization_token" "ecr_token" {}

provider "docker" {
registry_auth {
address = data.aws_ecr_authorization_token.ecr_token.proxy_endpoint
username = data.aws_ecr_authorization_token.ecr_token.user_name

21

password = data.aws_ecr_authorization_token.ecr_token.password
X
i

We need to use Terraform to create an ECR repository to push to.

» cat main.tf

resource "aws_ecr_repository" "taskoverflow" {
name = "taskoverflow"

}

The URL for containers in the ECR following the format below:

{ACCOUNT_ID}.dkr.ecr.{REGION}.amazonaws.com/{REPOSITORY_NAME}

Remember — to push to a container registry we need a local container whose tag matches the remote
URL. We could then create and push the contianer locally with:

docker build -t {ACCOUNT_ID}.dkr.ecr.{REGION}.amazonaws.com/{REPOSITORY_NAME} .
docker push {ACCOUNT_ID}.dkr.ecr.{REGION}.amazonaws.com/{REPOSITORY_NAME}

However, it would be easier if we could build and push this container from within Terraform. We can
use the Docker provider for this.

» cat image.tf

resource "docker_image" "taskoverflow" {
name = "${aws_ecr_repository.taskoverflow.repository_url}:latest"
build {
context = "."
}
}

resource "docker_registry_image" "taskoverflow" {
name = docker_image.taskoverflow.name

}

Notice that we are able to utilize the output of the ECR repository as the URL which resolves to the
correct URL for the image.

References

[11 B. Webb, “Infrastructure as code;’ March 2022. https://csse6400.uqcloud.net/handouts/iac.
pdf.

22

{ACCOUNT_ID}.dkr.ecr.{REGION}.amazonaws.com/{REPOSITORY_NAME}
https://csse6400.uqcloud.net/handouts/iac.pdf
https://csse6400.uqcloud.net/handouts/iac.pdf

	Database & Container Deployment
	This Week
	Terraform in AWS Learner Labs
	Deploying a Database in AWS
	RDS Database with Terraform
	Container on AWS
	Setup
	[Path A] EC2
	[Path B] ECS
	[Path C] EKS / K8S

	Hosting TaskOverflow Images

