
Last Updated on 2024/04/23

Load Testing & Bottlenecks Software Architecture
April 24, 2024 Brae Webb

Aside
Github Classroom links for this practical can be found on Edstem https://edstem.org/au/
courses/15375/discussion/1753712

1 This Week
Our goal is to:

• Introduce structured logging to TaskOverflow.
• Deploy TaskOverflow to AWS.
• Write k6 tests to ensure TaskOverflow can handle given scenarios.

1

https://edstem.org/au/courses/15375/discussion/1753712
https://edstem.org/au/courses/15375/discussion/1753712

• Uncover and fix bottlenecks in the TaskOverflow application using the logs.
2 Watchtower
In this course we have repeatedly claimed that there is value in montoring and logging. This week, we aimto prove it by using logging to help diagnose issues with a deployment of TaskOverflow. For this task, wehave integrated Watchtower1 into the project. Watchtower is a Python library that allows us to send logsto AWS CloudWatch, allowing us to monitor the application’s performance in real time.Currently the project is configured to log API accesses made with Flask and to log database queriescreated by SQL Alchemy. This results in an unstructured log stream as seen in Figure 1.

Figure 1: An example of logs made to AWS CloudWatch for a DELETE request in the TaskOverflow API.

Getting Started

1. Using the GitHub Classroom link for this practical, provided by your tutor on edstem, create a repos-itory to work within.
2. Install Terraform if not already installed, as it will be required again this week.
3. Start your learner lab and copy the AWS Learner Lab credentials into a credentials file in the root ofthe repository.

What’s New We are returning to TaskOverflow roughly from the state at the end of the last practical. Thefollowing notable changes have been made:
• Watchtower has been installed as a dependency.
• In docker-compose.yml, wemount the credentials file to /root/.aws/credentials. This allowslocal testing of watchtower to log to AWS CloudWatch.
• Logging has been introduced for Flask and SQL Alchemy.
Our first task will be to replicate the above logs in Figure 1. Once you have copied credentials intothe project root, start docker compose with:
$ docker-compose up

1https://pypi.org/project/watchtower/

2

https://pypi.org/project/watchtower/
https://pypi.org/project/watchtower/

app_1 | * Serving Flask app 'todo'
app_1 | * Debug mode: on
app_1 | INFO:werkzeug:WARNING: This is a development server. Do not use it in a

production deployment. Use a production WSGI server instead.
app_1 | * Running on all addresses (0.0.0.0)
app_1 | * Running on http://127.0.0.1:6400
app_1 | * Running on http://192.168.96.3:6400
app_1 | INFO:werkzeug:Press CTRL+C to quit
app_1 | INFO:werkzeug: * Restarting with stat
app_1 | INFO:botocore.credentials:Found credentials in shared credentials file: ~/.

aws/credentials
app_1 | INFO:sqlalchemy.engine.Engine:select pg_catalog.version()
app_1 | INFO:sqlalchemy.engine.Engine:[raw sql] {}
app_1 | INFO:sqlalchemy.engine.Engine:select current_schema()
app_1 | INFO:sqlalchemy.engine.Engine:[raw sql] {}
app_1 | INFO:sqlalchemy.engine.Engine:show standard_conforming_strings
app_1 | INFO:sqlalchemy.engine.Engine:[raw sql] {}
app_1 | INFO:sqlalchemy.engine.Engine:BEGIN (implicit)
app_1 | INFO:sqlalchemy.engine.Engine:SELECT pg_catalog.pg_class.relname
app_1 | FROM pg_catalog.pg_class JOIN pg_catalog.pg_namespace ON pg_catalog.

pg_namespace.oid = pg_catalog.pg_class.relnamespace
app_1 | WHERE pg_catalog.pg_class.relname = %(table_name)s AND pg_catalog.pg_class.

relkind = ANY (ARRAY[%(param_1)s, %(param_2)s, %(param_3)s, %(param_4)s, %(
param_5)s]) AND pg_catalog.pg_table_is_visible(pg_catalog.pg_class.oid) AND
pg_catalog.pg_namespace.nspname != %(nspname_1)s

app_1 | INFO:sqlalchemy.engine.Engine:[generated in 0.00011s] {'table_name': 'todos',
'param_1': 'r', 'param_2': 'p', 'param_3': 'f', 'param_4': 'v', 'param_5': 'm',

'nspname_1': 'pg_catalog'}
app_1 | INFO:sqlalchemy.engine.Engine:COMMIT
app_1 | WARNING:werkzeug: * Debugger is active!

You should see logs similar to the above. Notice that information about Flask is prefixedwithINFO:werkzeugand information about SQL Alchemy is prefixed with INFO:sqlalchemy.engine.Engine. This prefix in-dicates which log stream they are put into.Open the AWS CloudWatch console and go to Log groups on the side panel. You should see a loggroup called taskoverflow, if you click on that group you can see the two log streams.

3

2.1 Structured Logging
Our first task will be to convert the current logging into a structured logging format. As we saw in lastweek’s tutorial, structured logging can be as simple as logging a JSON object. This allows logging servicesto quickly filter through logs based on criteria of the object’s fields.In todo/__init__.py we have the following code within the create_app function. This code config-ures watchtower to log to AWS CloudWatch.

» cat todo/__init__.py

def create_app(config_overrides=None):
...
handler = watchtower.CloudWatchLogHandler(

log_group_name="taskoverflow",
boto3_client=boto3.client("logs", region_name="us-east-1")

)
app.logger.addHandler(handler)
...

Wewant towrap all our logs in JSONobjects and injectmetadata into these objects. Thismakes it easierto search the logs. Todo this, wewill create a custom log formatter that is a subclass ofwatchtower.CloudWatchLogFormatter.

» cat todo/__init__.py

from flask import has_request_context, request
...

class StructuredFormatter(watchtower.CloudWatchLogFormatter):
def format(self, record):

record.msg = {
'timestamp': record.created,
'location': record.name,
'message': record.msg,

}
if has_request_context():

record.msg['request_id'] = request.environ.get('REQUEST_ID')
record.msg['url'] = request.environ.get('PATH_INFO')
record.msg['method'] = request.environ.get('REQUEST_METHOD')

return super().format(record)

def create_app(config_overrides=None):
...
handler = ...
handler.setFormatter(StructuredFormatter())
...

These are just some metadata fields we might want to add to our logging. We may also consider
socket.gethostname() to identify the instance handling a request, or other helpful information.

4

2.2 Correlation IDs
Correlation IDs are a mechanism to help understand the path of a request, event, message, etc. through asystem. When logging it is often helpful to be able to trace the execution of a particular request.For our system we will generate a new random identifier for each incoming request. This identifier willbe included as part of the logging metadata. For a system with multiple API endpoints requests will oftencome with an established REQUEST_ID header.

» cat todo/__init__.py

import uuid
...

def create_app(config_overrides=None):
...
requests = logging.getLogger("requests")
requests.addHandler(handler)

@app.before_request
def before_request():

request.environ['REQUEST_ID'] = str(uuid.uuid4())
requests.info("Request started")

@app.after_request
def after_request(response):

requests.info("Request finished")
return response

...

The code above in create_app will generate a unique identifier for each incoming request. It will alsolog when a request starts being processed and when it finishes processing.
2.3 Verify and Refine
Ensure that the above modifications are working as expected by returning to the AWS CloudWatch logs.Launch the service locally and make some API requests.You should now be able to go to the Log Insights interface from the sidebar. As we saw in the tutorial,this interface allows you to make queries about structured logging data. Try the following query to ensurethat your logs seem sensible.
fields request_id, url, method, @timestamp, message.message, @message, @method
| filter not isempty(request_id)
| limit 400

Take the time to refine your loggingnow toproduce logs that are easy to search through andunderstandthe trace of your API requests.

5

3 Load Testing
Wewill now generate some load on our API using k6 and see how it performs. We briefly saw k6 at the endof the week 7 practical. To refresh, k6 is a load testing tool that is written in Go but provides an interfaceusing a JavaScript subset.It will help us to generate a large number of concurrent API requests. Install k6 from: https://k6.io/
docs/get-started/installation/

3.1 Scenario
We want to simulate the following scenario using our testing framework.
Indecisive planners and studious reviewers Our TaskOverflow application is being used at a point insemester where most students have already setup their tasks. These students are routinely visiting thewebsite and listing the tasks they have yet to complete. At the same time, there are 40 very indecisivestudents who, quite late in semester, are trying to setup their tasks for the rest of semester. They contin-ually create a task, realise that they have mis-typed, delete the task, and start over.As the tasks are shared globally amongst all students, the indecisive planners are altering the list of taskseen by the organised students.
3.2 Setup
To get started, we will create a file called planners-and-studiers.js. Most k6 tests start with the fol-lowing imports.

» cat planners-and-studiers.js

import http from "k6/http";
import { check, sleep } from "k6";

const ENDPOINT = __ENV.ENDPOINT;

• http holds the methods used to make HTTP requests,
• check allows us to assert the state of HTTP responses, and
• sleep gives us the ability to put a simulated user to sleep rather than continuously spamming theservice with requests.
The ENDPOINT line retrieves the endpoint URL from the ENDPOINT environment variable.

3.3 User Simulation
The behaviour of our users will be defined by an exported JavaScript function. Our studying student willbe listing out all of the tasks they have left to complete by using the /api/v1/todos endpoint.

» cat planners-and-studiers.js

6

https://k6.io/docs/get-started/installation/
https://k6.io/docs/get-started/installation/

export function studyingStudent() {
let url = ENDPOINT + '/api/v1/todos';

// What tasks do I have left to work on?
let request = http.get(url);

check(request, {
'is status 200': (r) => r.status === 200,

});

// Alright I'll go work on my next task for around 2 minutes
sleep(120);

}

Of course, this test is very basic as it only ensures the response code is 200. There is no guarantee thatthe returned data is sensible.
Info
If you would like a challenge, you can use the randomIntBetween function to have the studier oc-casionally tick off tasks.
https://k6.io/docs/javascript-api/jslib/utils/randomintbetween/

Next we need to handle our indecisive users. For them, we will need to make a POST request to the
/api/v1/todos endpoint to create a task. Then we will need to use the ID given by the POST response toDELETE the mis-typed task.

» cat planners-and-studiers.js

export function indecisivePlanner() {
let url = ENDPOINT + '/api/v1/todos';

// I need to work on the CSSE6400 Cloud Assignment!
const payload = JSON.stringify({

"title": "CSSE6400 Clout Assignment",
"completed": false,
"description": "",
"deadline_at": "2023-12-04T14:00:00",

});

const params = {
headers: {

'Content-Type': 'application/json',
},

};

let request = http.post(url, payload, params);
check(request, {

'is status 200': (r) => r.status === 200,

7

https://k6.io/docs/javascript-api/jslib/utils/randomintbetween/

});

sleep(10);

// Oh no! Not the Clout assignment, the Cloud assignment!
const wrongId = request.id;

request = http.del('${url}/${wrongId}');

check(request, {
'is status 200': (r) => r.status === 200,

});

// I'll come back to it later :(
sleep(10);

}

3.4 Configure Behaviour
We have now outlined how our user agents will interact with our API. We can use the options to configurehow these interactions occur over time. To prevent overloading the API immediately, and allow any auto-scaling behaviour to be triggers, we will slowly increase the amount of studiers. We will have a consistentamount of planners, 20, who will perform a total of 200 corrections over the test.

» cat planners-and-studiers.js
export const options = {

scenarios: {
studier: {

exec: 'studyingStudent',
executor: "ramping-vus",
stages: [

{ duration: "2m", target: 1000 },
{ duration: "2m", target: 2500 },
{ duration: "2m", target: 0 },

],
},
planner: {

exec: 'indecisivePlanner',
executor: "shared-iterations",
vus: 20,
iterations: 400,

},
},

};

3.5 Running the Tests
Now we have a completed load test. Deploy the service to AWS:

8

$ terraform apply

Once the deployment is finished, you should be given a URLwhere the endpoint is deployed. Use thatendpoint to set the ENDPOINT environment variable and run the tests.
> export ENDPOINT=...
> k6 run planners-and-studiers.js

These tests should take about 10 minutes to run. You should see that most of the tests pass but thatthere will be a few failures throughout, as seen below.
WARN[0152] Request Failed error="Get \"http://54.166.206.229:6400//api/v1/todos\":

request timeout"
WARN[0183] Request Failed error="Get \"http://54.166.206.229:6400/api/v1/todos\":

request timeout"
WARN[0239] Request Failed error="Get \"http://54.166.206.229:6400/api/v1/todos\":

request timeout"
WARN[0241] Request Failed error="Get \"http://54.166.206.229:6400/api/v1/todos\":

request timeout"
WARN[0272] Request Failed error="Get \"http://54.166.206.229:6400/api/v1/todos\":

request timeout"
WARN[0330] Request Failed error="Get \"http://54.166.206.229:6400/api/v1/todos\":

request timeout"
WARN[0339] Request Failed error="Get \"http://54.166.206.229:6400/api/v1/todos\":

request timeout"
WARN[0371] Request Failed error="Get \"http://54.166.206.229:6400/api/v1/todos\":

request timeout"
WARN[0412] Request Failed error="Get \"http://54.166.206.229:6400/api/v1/todos\":

request timeout"
WARN[0412] Request Failed error="Get \"http://54.166.206.229:6400/api/v1/todos\":

request timeout"
WARN[0467] Request Failed error="Get \"http://54.166.206.229:6400/api/v1/todos\":

request timeout"

running (09m30.0s), 0000/2520 VUs, 4914 complete and 1947 interrupted iterations
planner [100%] 20 VUs 07m09.0s/10m0s 400/400 shared iters
studier [100%] 0000/2500 VUs 9m0s

is status 200
94% 6646 / 411

checks.........................: 94.17% 6646 411
data_received..................: 166 MB 292 kB/s
data_sent......................: 727 kB 1.3 kB/s
iterations.....................: 4914 8.620734/s
vus............................: 1 min=1 max=2520
vus_max........................: 2520 min=2520 max=2520

9

4 Debugging
Nowwe can start to debug our service. We desire to not only increase our 94% pass rate to 100%but alsoto increase the amount of studiers and planners.
4.1 Tips
Open TaskOverflow If you open TaskOverflow, you should find it has been left in an unusual state afterthe tests. See if you can find out from the logs how this occurred.
Follow an Interaction Use the correlation IDs that we have included to see where potential bottlenecksmay be occurring. You can introduce more fine-grained logs to find where time is being spent.

10

	Load Testing & Bottlenecks
	This Week
	Watchtower
	Structured Logging
	Correlation IDs
	Verify and Refine

	Load Testing
	Scenario
	Setup
	User Simulation
	Configure Behaviour
	Running the Tests

	Debugging
	Tips

