
Containers
Software Architecture

Brae Webb

March 4, 2024



Question

What is a container?



Question

What is a container?

Answer

A way of packaging software and its
dependencies such that the software can be run
in numerous environments.



Okay...

How hard could that be?



Packaging software

>> cat program.py
1 #!/usr/bin/env python3

3 import numpy as np

4 import re

6 my_arr = np.array([5, 2, 9, 7, 3])

7 max_element = np.max(my_arr)

9 duplicated_max = re.sub(".*", f"{max_element}", "X")

10 print(sum(int(x) for x in duplicated_max))

> ./program.py

18



demo

Transferring this software to client.



> ./program.py

/usr/bin/env: 'python3': No such file or directory

No Python interpreter installed, have to install Python and all it’s dependencies.



> ./program.py

/usr/bin/env: 'python3': No such file or directory

No Python interpreter installed, have to install Python and all it’s dependencies.



> ./program.py

File "./program.py", line 9

duplicated_max = re.sub(".*", f"{max_element}", "X")

^

SyntaxError: invalid syntax

f-strings aren’t supported in Python 3.5! Have to upgrade to Python 3.6.



> ./program.py

File "./program.py", line 9

duplicated_max = re.sub(".*", f"{max_element}", "X")

^

SyntaxError: invalid syntax

f-strings aren’t supported in Python 3.5! Have to upgrade to Python 3.6.



> ./program.py

Traceback (most recent call last):

File "./program.py", line 3, in <module>

import numpy as np

ModuleNotFoundError: No module named 'numpy'

A Python dependency used by our code isn’t installed. Have to install numpy
(hopefully the right version...).



> ./program.py

Traceback (most recent call last):

File "./program.py", line 3, in <module>

import numpy as np

ModuleNotFoundError: No module named 'numpy'

A Python dependency used by our code isn’t installed. Have to install numpy
(hopefully the right version...).



> ./program.py

9

???



> ./program.py

9

???



Question

Not so easy... what do we need?



A wall

A big wall around our
environment so that we know
what software we are actually
depending upon.



A package

A way to box up all your
software and dependencies so
that it can be transferred and
run in a different environment.



§ A History of
Containers 1

1This is a very Linux focused history — container technology also exists in the Windows world.



1979

Unix Version 7

Introducing... chroot



demo

Exploring chroot



Exploring chroot

> mkdir ./jail

> cd jail

> chroot . /bin/ls

chroot: failed to run command '/bin/ls': No such file or directory

> mkdir bin

> cp /bin/ls bin

> chroot . /bin/ls

chroot: failed to run command '/bin/ls': No such file or directory



Exploring chroot

> ldd /bin/ls

libselinux.so.1 => /lib/x86_64-linux-gnu/libselinux.so.1 (0

x00007f0097135000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f0096f0d000)

libpcre2-8.so.0 => /lib/x86_64-linux-gnu/libpcre2-8.so.0 (0

x00007f0096e76000)

/lib64/ld-linux-x86-64.so.2 (0x00007f0097189000)

> cp --parents /lib/x86_64-linux-gnu/libselinux.so.1 /lib/x86_64-

linux-gnu/libc.so.6 /lib/x86_64-linux-gnu/libpcre2-8.so.0 /lib64/

ld-linux-x86-64.so.2 .

> ls

bin lib lib64

> ls lib/x86_64-linux-gnu/

libc.so.6 libpcre2-8.so.0 libselinux.so.1



Exploring chroot

> chroot . /bin/ls

bin lib lib64

> chroot . /bin/ls /

bin lib lib64

> chroot . /bin/ls ..

bin lib lib64

> chroot . /bin/ls /bin

ls



Chroot Limitations

• Only filesystem isolation
• processes, network, etc. still accessible

• Not very user friendly

• Not very portable

• Jailbreak is possible



1992

Plan 9

Introducing...
layered filesystem

https://www.bell-labs.com/institute/blog/plan-9-bell-labs-cyberspace/
https://www.bell-labs.com/institute/blog/plan-9-bell-labs-cyberspace/
https://www.bell-labs.com/institute/blog/plan-9-bell-labs-cyberspace/


Layered filesystem

• Projection on read

• Copy on write



Projection on read

passwords.txt

diary.md

help.md

passwords.txtdiary.mdhelp.md

> ls

passwords.txt help.md diary.md



Copy on write

> echo "1234" >> passwords.txt

passwords.txt

diary.md

help.md

passwords.txtdiary.mdhelp.md

passwords.txt



demo

Exploring a layered filesystem



Exploring a layered filesystem

> mkdir lower upper worker merged

> echo "password1234" >> lower/passwords.txt

> touch lower/help.md upper/diary.md

> mount -t overlay -o lowerdir=lower,upperdir=upper,workdir=worker

none merged



Exploring a layered filesystem

> ls merged

diary.md help.md passwords.txt

> ls upper

diary.md

> ls lower

> cat lower/passwords.txt

password1234

> echo "1234" >> merged/passwords.txt

> cat merged/passwords.txt

password1234

1234

> ls upper

diary.md passwords.txt

> cat lower/passwords.txt

password1234



2002

Linux kernel 2.4.19

Introducing...
namespaces



Linux Namespaces

2002 Mount namespace

2006 Unix Time-Sharing namespace

2006 Inter-process Communication namespace

2008 Process ID namespace

2009 Network namespace

2013 User namespace

2016 Control group namespace



2008

LinuX Containers (LXC)



2013

PyCon 2013

Introducing...
Docker

https://youtu.be/wW9CAH9nSLs


Docker was the magic that made Linux
containers usable for mere mortals.

- Nigel Poulton



§ The Language of
Containers



Definition 1. Container

A running process created from a container image.

Typically isolated from the host system.



Definition 2. Container Image

A set of files that can be used to create a container .



Container Image

> docker run -it ubuntu /bin/bash

root@f2b0b0c0b0b0:/# ls

bin dev home lib64 mnt proc run srv

root@f2b0b0c0b0b0:/# exit

> docker run -it ubuntu /bin/ls

bin dev home lib64 mnt proc run srv



Definition 3. Container Engine

A tool to create and manage containers. Often also

manages container images.



Container Engines

• Docker

• rkt

• LXC

• runC

• Containerd

• CRI-O

• Podman



Creating a container image

To create a container image, we need to create
a collection of image layers .

Fortunately, this is no longer a manual
process...

Instead we use a build file, or image blueprints.



Creating a container image

To create a container image, we need to create
a collection of image layers .

Fortunately, this is no longer a manual
process...

Instead we use a build file, or image blueprints.



Definition 4. Build File

File containing the instructions for creating a con-

tainer image.



Build File

>> cat Dockerfile

1 FROM ubuntu

2 RUN apt-get update

3 RUN apt-get install -y cowsay

4 CMD ["/usr/games/cowsay", "Hello World"]

> docker build -t cowsay .

> docker run cowsay



Build File

>> cat Dockerfile

1 FROM ubuntu

2 RUN apt-get update

3 RUN apt-get install -y cowsay

4 CMD ["/usr/games/cowsay", "Hello World"]

> docker build -t cowsay .

> docker run cowsay



Build File

>> cat Dockerfile

1 FROM ubuntu

2 RUN apt-get update

3 RUN apt-get install -y cowsay

4 CMD ["/usr/games/cowsay", "Hello World"]

> docker build -t cowsay .

> docker run cowsay



>> cat Dockerfile

1 FROM ubuntu

2 RUN apt-get update

3 RUN apt-get install -y cowsay

4 CMD ["/usr/games/cowsay", "Hello World"]
ubuntu

apt-get update

apt-get install cowsay



>> cat Dockerfile

1 FROM ubuntu

2 RUN apt-get update

3 RUN apt-get install -y cowsay

4 RUN rm -rf /var/lib/apt/lists/*

5 CMD ["/usr/games/cowsay", "Hello World"]

ubuntu

apt-get update

apt-get install cowsay

rm -rf /var/...



>> cat Dockerfile

1 FROM ubuntu

2 RUN apt-get update && \

3 apt-get install -y cowsay && \

4 rm -rf /var/lib/apt/lists/*

5 CMD ["/usr/games/cowsay", "Hello World"]

ubuntu

update && install && rm



Question

Where did ubuntu come from?



Question

Where did ubuntu come from?

Answer

Our final definition — a container registry .



Definition 5. Container Registry

A file sharing platform that hosts container images .

Container images are pulled (downloaded) from reg-

istries.



§ Virtual Machines



Hardware

Operating System

Hypervisor

Guest OS Guest OS

File System File System

App 1 App 2

Hardware

Operating System

File System

App 1

File System

App 2

Docker Daemon



Hardware

Operating System

Hypervisor

Guest OS Guest OS

File System File System

App 1 App 2

Hardware

Operating System

File System

App 1

File System

App 2

Docker Daemon



Isolation

Virtual machines are used for machine
isolation.

Containers are used for process isolation.



Size Comparison

I want 10 flask servers running on Ubuntu 22.

Ubuntu 22 ≃ 3.8GB

Python 3.6 ≃ 232MB

Flask ≃ 11.1MB

My App ≃ 12K

Virtual Machine

Image Size = 3.8GB + 232MB

+ 11.1MB + 12K

= 4.04GB

Total Space = 4.04GB ∗ 10
= 40.4GB

Container

Image Size = 12K

Layer Size = 3.8GB + 232MB + 11.1MB

= 4.04GB

Total Space = (12K ∗ 10) + 4.04GB

≃ 4.04GB



Question

When would I want a virtual machine?



Question

When would I want a virtual machine?

Answer

• Running a different operating system .

• Unique hardware requirements such as
emulating old computer hardware.

• Where security is crucial virtual machines
can offer greater isolation.



Question

When would I want a container?



Question

When would I want a container?

Answer

• Running a single application.

• Lightweight and fast to startup.

• Running many containers on the same
system.



Combined Use Cases

Often virtual machines and containers are
combined .

e.g. If you deploy containers on Google
Kubernetes Engine, the containers run inside of
virtual machines on Google’s hardware.



§ Use Cases



Dependency Management

Containers provide a reliable, if brute force,
way to manage dependencies .

Wrap the whole machine state up and ship it.



Continuous Integration

Containers allow developers to locally replicate
the same test environment as the CI system.



Continuous Delivery

Containers allow teams to package, deploy, and
manage applications more efficiently.

Containers can be used to deploy on cloud
platforms or on-premise servers with minimal
manual configuration.



Scaling

Containers allow applications to be scaled up
or down quickly and efficiently .



Microservices

Containers make it easy to deploy and manage
individual services independently .



Serverless

Containers are the basis for serverless
computing .



§ Docker





$ docker build [context]

Summary
Run each instruction in the blueprint (Dockerfile) to build each layer resulting in
the top-level layer (image).

Key parameters

-f The Dockerfile to use (default: [context]/Dockerfile)

-t The tag (name) of the image to build



$ docker run [image]

Summary
Run a container from the specified image.

Key parameters

-d Run the container in the background

-p Publish a container’s port to the host

-v Mount a volume

-e Set environment variables

-i Keep STDIN open even if not attached

-t Allocate a pseudo-TTY



$ docker exec [container]

Summary
Run a command in a running container .

Key parameters

-d Run the command in the background

-e Set environment variables

-i Keep STDIN open even if not attached

-t Allocate a pseudo-TTY



$ docker ps

Summary
List running containers.

Key parameters

-a Show all containers (default shows just running)

-f Filter output based on conditions provided



$ docker stop [container]

Summary
Stop a running container.

Key parameters

-t Seconds to wait for stop before killing it



$ docker rm [container]

Summary
Remove a container.

Key parameters

-f Force the removal of a running container (uses SIGKILL)

-v Remove the volumes associated with the container



$ docker images

Summary
List images.

Key parameters

-a Show all images (default hides intermediate images)

-f Filter output based on conditions provided



$ docker rmi [image]

Summary
Remove an image.

Key parameters

-f Force removal of the image



$ docker pull [image]

Summary
Pull an image or a repository from a registry.



$ docker push [image]

Summary
Push an image or a repository to a registry.



§ Examples



Structurizr

> git clone git@github.com:CSSE6400/software-architecture.git

> cd software-architecture/slides/microkernel/c4_model

> docker run -it --rm -p 8080:8080 -v $(pwd):/usr/local/structurizr
structurizr/lite

Open in browser: http://localhost:8080

http://localhost:8080


GitLab

> mkdir gitlab

> export GITLAB_HOME=$(pwd)/gitlab
> docker run -it --rm -d -p 223:80 --shm-size 256m -v ${GITLAB_HOME}/

config:/etc/gitlab -v ${GITLAB_HOME}/logs:/var/logs/gitlab -v ${
GITLAB_HOME}/data:/var/opt/gitlab gitlab/gitlab-ee:latest

> cat ./gitlab/config/initial_password

Open in browser: http://localhost:223

http://localhost:223


Doom

> docker run -it --rm -p 224:6901 -e VNC_PW=password kasmweb/doom

:1.12.0

Open in browser: http://localhost:224
Username: kasm user
Password: password

http://localhost:224


§ Docker Compose



Exercise

We want to create multiple containers that
work together .

But we don’t want to remember all the
commands to start and manage the
containers and get them to talk to each other. . .



Exercise

We want to create multiple containers that
work together .

But we don’t want to remember all the
commands to start and manage the
containers and get them to talk to each other. . .



When faced with tedium

Script it!



>> cat start.sh

1 docker build -t frontend ./frontend

2 docker build -t backend ./backend

4 docker run -p 3000:3000 -v ./frontend:/app -e ... -d frontend

5 docker run -p 8081:8081 -v ./backend:/app -e ... -d backend

6 docker run -p 80:80 -v ./nginx.conf:/etc/nginx/nginx.conf -d nginx



This turns out to be very common. . .

Introducing. . .Docker Compose



This turns out to be very common. . .

Introducing. . .Docker Compose



>> cat start.sh

1 docker build

2 -t frontend

3 ./frontend

5 docker run

6 -p 3000:3000

7 -v ./frontend:/app

8 -e ...

9 -d

10 frontend

>> cat docker-compose.yml

version: '3'
services:

frontend:

build: ./frontend

ports:

- "3000:3000"

volumes:

- ./frontend:/app

environment:

- ...

backend:

build: ./backend

ports:

- "8081:8081"

volumes:

- ./backend:/app

environment:

- ...

nginx:

image: nginx

ports:

- "80:80"

volumes:

- ./nginx.conf:/etc/nginx/

nginx.conf

depends_on:

- frontend

- backend



$ docker-compose up

Summary
Create and run containers.

Key parameters

-d Detached mode: Run containers in the background, print new
container names.

–build Rebuild containers if necessary.



$ docker-compose down

Summary
Stop and remove containers, networks, images, and volumes.

Key parameters

-v Remove named volumes declared in the ‘volumes’ section of the
Compose file and anonymous volumes attached to containers.

-t Specify a shutdown timeout in seconds.



$ docker-compose ps

Summary
List containers.



$ docker-compose logs

Summary
View output from containers.

Key parameters

-f Follow log output.



$ docker-compose exec [service]

Summary
Run a command in a running container.

Key parameters

-d Detached mode: Run command in the background.

-T Disable pseudo-tty allocation. By default ‘docker-compose exec’
allocates a TTY.

-e Set environment variables.



$ docker-compose build

Summary
Build or rebuild services.

Key parameters

–no-cache Do not use cache when building the image.

–pull Always attempt to pull a newer version of the image.



In the practical this week...



https://xkcd.com/1988/

https://xkcd.com/1988/
https://xkcd.com/1988/

	A History of Containers This is a very Linux focused history — container technology also exists in the Windows world.
	The Language of Containers
	Virtual Machines
	Use Cases
	Docker
	Examples
	Docker Compose

