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Monolith Deployment
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Atomic Decomposition

• Refactor monolith
• Use service to deliver application functionality

• Monolith may need to invoke service

• Remove service logic from monolith



Stepwise Decomposition

Replace application functionality one service at
a time.



Definition 1. Macroservice

Separate service, but may span more than one do-

main or share a database with the monolith or other

services.



Definition 2. Nanoservice

Service that depends on other services and cannot be

deployed independently – its context is too small.


