
Decomposing Monoliths

CSSE6400

Richard Thomas

May 20, 2024



Question

What are the benefits of a monolith
architecture?



Question

What are the benefits of a monolith
architecture?

Answer

• Simple deployment

• Simple communication between modules

• Simple system testing & debugging



Question

What are the benefits of a monolith
architecture?

Answer

• Simple deployment

• Simple communication between modules

• Simple system testing & debugging



Question

What are the benefits of a monolith
architecture?

Answer

• Simple deployment

• Simple communication between modules

• Simple system testing & debugging



Question

Why do monoliths have a bad name?



Question

Why do monoliths have a bad name?

Answer

• Many legacy system nightmares were
monoliths

• Easy to defeat modularity

• Cannot scale components of system

• Monolith databases scale poorly



Question

Why do monoliths have a bad name?

Answer

• Many legacy system nightmares were
monoliths

• Easy to defeat modularity

• Cannot scale components of system

• Monolith databases scale poorly



Question

Why do monoliths have a bad name?

Answer

• Many legacy system nightmares were
monoliths

• Easy to defeat modularity

• Cannot scale components of system

• Monolith databases scale poorly



Question

Why do monoliths have a bad name?

Answer

• Many legacy system nightmares were
monoliths

• Easy to defeat modularity

• Cannot scale components of system

• Monolith databases scale poorly



Question

What can be done if a monolith architecture is
no longer suitable?



Question

What can be done if a monolith architecture is
no longer suitable?

Answer

• Greenfields replacement

• Migrate to another architecture



Question

What can be done if a monolith architecture is
no longer suitable?

Answer

• Greenfields replacement

• Migrate to another architecture



Question

How do I migrate a monolith to a new
architecture?



Question

How do I migrate a monolith to a new
architecture?

Answer

Decompose the monolith into services.



Strangler Fig Pattern

• Develop API for application’s UI

• Proxy intercepts API calls

• Proxy directs calls to application
or new services

• Implement a service

• Redirect calls to service

• Progressively replace monolith

• Shadow & Blue-Green

Deployment



Strangler Fig Pattern

• Develop API for application’s UI

• Proxy intercepts API calls

• Proxy directs calls to application
or new services

• Implement a service

• Redirect calls to service

• Progressively replace monolith

• Shadow & Blue-Green

Deployment



Strangler Fig Pattern

• Develop API for application’s UI

• Proxy intercepts API calls
• Proxy directs calls to application
or new services

• Implement a service

• Redirect calls to service

• Progressively replace monolith

• Shadow & Blue-Green

Deployment



Strangler Fig Pattern

• Develop API for application’s UI

• Proxy intercepts API calls
• Proxy directs calls to application
or new services

• Implement a service
• Redirect calls to service

• Progressively replace monolith

• Shadow & Blue-Green

Deployment



Strangler Fig Pattern

• Develop API for application’s UI

• Proxy intercepts API calls
• Proxy directs calls to application
or new services

• Implement a service
• Redirect calls to service

• Progressively replace monolith

• Shadow & Blue-Green

Deployment



Strangler Fig Pattern

• Develop API for application’s UI

• Proxy intercepts API calls
• Proxy directs calls to application
or new services

• Implement a service
• Redirect calls to service

• Progressively replace monolith

• Shadow & Blue-Green

Deployment



Monolith Deployment



Monolith Decompose: Step 1



Monolith Decompose: Step 2



Decomposition Process

• Identify bounded-contexts

• Simple first service

• e.g. Authentication

• Minimise dependency from services to
monolith

• Monolith may use services



Decomposition Process

• Identify bounded-contexts

• Simple first service
• e.g. Authentication

• Minimise dependency from services to
monolith

• Monolith may use services



Decomposition Process

• Identify bounded-contexts

• Simple first service
• e.g. Authentication

• Minimise dependency from services to
monolith
• Monolith may use services



Decomposition Process

• Reduce coupling between bounded-contexts
• e.g. Customer account management

• Profile, Wish List, Payment Preferences – separate
services

• Decouple vertically

• Service delivers entire bounded-context

• Data is decoupled from monolith



Decomposition Process

• Reduce coupling between bounded-contexts
• e.g. Customer account management

• Profile, Wish List, Payment Preferences – separate
services

• Decouple vertically
• Service delivers entire bounded-context

• Data is decoupled from monolith



Decomposition Process

• Focus on pain points
• Bottlenecks
• Frequently changing behaviour

• Rewrite, don’t reuse

• Redesign for new infrastructure
• Reuse complex logic

• e.g. Discounts based on customer loyalty and
behaviour, bundle offers, . . .



Decomposition Process

• Focus on pain points
• Bottlenecks
• Frequently changing behaviour

• Rewrite, don’t reuse
• Redesign for new infrastructure
• Reuse complex logic

• e.g. Discounts based on customer loyalty and
behaviour, bundle offers, . . .



Atomic Decomposition

• Refactor monolith
• Use service to deliver application functionality

• Monolith may need to invoke service

• Remove service logic from monolith



Stepwise Decomposition

Replace application functionality one service at
a time.



Definition 1. Macroservice

Separate service, but may span more than one do-

main or share a database with the monolith or other

services.



Definition 2. Nanoservice

Service that depends on other services and cannot be

deployed independently – its context is too small.


