
Mathias Verras
@mathiasverraes

There are only two hard problems
in distributed systems:
2. Exactly-once delivery
1. Guaranteed order of messages
2. Exactly-once delivery

Distributed Systems I

Software Architecture

Brae Webb & Richard Thomas

March 18, 2024

Going forward

Investigating architectures that are distributed .

Distributed Systems Series

Distributed I Reliability and scalability of
stateless systems.

Distributed II Complexities of stateful
systems.

Distributed III Hard problems in distributed
systems.

What are the benefits?

• Improved reliability

• Improved scalability

• Improved latency

What are the drawbacks?

• Increased complexity

• Increased attack vector

• Increased latency

• Introduce consistency problems

§ Fallacies

A few reasons for complexity

The Fallacies of Distributed Computing .

Fallacy #1

The network is reliable.

Exponential Backoff

1 retries = 0

2 do:

3 status = service.request()

5 if status != SUCCESS:

6 retries += 1

7 wait(2 ** retries)

8 while (status != SUCCESS and retries < MAX_RETRIES)

Fallacy #2

Latency is zero.

Network Statistics

Home to UQ

Home to us-east-1

EC2 to EC2

Network Statistics

Home to UQ 20.025ms

Home to us-east-1

EC2 to EC2

Network Statistics

Home to UQ 20.025ms

Home to us-east-1 249.296ms

EC2 to EC2

Network Statistics

Home to UQ 20.025ms

Home to us-east-1 249.296ms

EC2 to EC2 0.662ms

Fallacy #3

Bandwidth is infinite.

Definition 1. Stamp Coupling

Components which share a composite data structure.

Fallacy #4

The network is secure.

Fallacy #5

The topology never changes.

Fallacy #6

There is only one administrator.

Fallacy #7

Transport cost is zero.

Remember

Distributed systems are hard .

The choice to use them should be well
considered .

When you need to, maybe prove it?

https://youtube.com/watch?v=7w4KC6i9Yac

https://youtube.com/watch?v=7w4KC6i9Yac
https://youtube.com/watch?v=7w4KC6i9Yac

Or, more realistically,

Use existing algorithms and software.

Distributed Systems Series

Distributed I Reliability and scalability of
stateless systems.

Distributed II Complexities of stateful systems.

Distributed III Hard problems in distributed
systems.

Stateless vs. Stateful Systems

Stateless Does not utilise persistent data.

Stateful Does utilise persistent data.

Question

What makes software reliable?

Definition 2. Reliable Software

Continues to work, even when things go wrong.

Definition 3. Fault

Something goes wrong.

Death, taxes, and computer system failure are
all inevitable to some degree.

Plan for the event.
- Howard and LeBlanc

Reliable software is

Fault tolerant .

Problem

Individual computers fail all the time.

Solution

Spread the risk of faults over multiple
computers or nodes .

Spreading Risk

If you have software that works with just one computer,
spreading the software over two computers halves the risk that
your software will fail.

Spreading Risk

If you have software that works with just one computer,
spreading the software over two computers halves the risk that
your software will fail.

Adding 100 computers reduces the risk by 100 .

Question

Who has used auto-scaling?

Auto-scaling terminology

Auto-scaling group A collection of instances managed by
auto-scaling.

Capacity Amount of instances currently in an auto-scaling
group.

Desired Capacity Amount of instances we want to have in an
auto-scaling group.

Scaling Policy How to determine the desired capacity.

Minimum/Maximum Capacity Hard limits on the minimum and
maximum number of instances.

Auto-scaling terminology

Auto-scaling group A collection of instances managed by
auto-scaling.

Capacity Amount of instances currently in an auto-scaling
group.

Desired Capacity Amount of instances we want to have in an
auto-scaling group.

Scaling Policy How to determine the desired capacity.

Minimum/Maximum Capacity Hard limits on the minimum and
maximum number of instances.

Auto-scaling terminology

Auto-scaling group A collection of instances managed by
auto-scaling.

Capacity Amount of instances currently in an auto-scaling
group.

Desired Capacity Amount of instances we want to have in an
auto-scaling group.

Scaling Policy How to determine the desired capacity.

Minimum/Maximum Capacity Hard limits on the minimum and
maximum number of instances.

Auto-scaling terminology

Auto-scaling group A collection of instances managed by
auto-scaling.

Capacity Amount of instances currently in an auto-scaling
group.

Desired Capacity Amount of instances we want to have in an
auto-scaling group.

Scaling Policy How to determine the desired capacity.

Minimum/Maximum Capacity Hard limits on the minimum and
maximum number of instances.

Auto-scaling terminology

Auto-scaling group A collection of instances managed by
auto-scaling.

Capacity Amount of instances currently in an auto-scaling
group.

Desired Capacity Amount of instances we want to have in an
auto-scaling group.

Scaling Policy How to determine the desired capacity.

Minimum/Maximum Capacity Hard limits on the minimum and
maximum number of instances.

What we really want

Desired Capacity Amount of healthy instances
we want to have in an auto-scaling group.

Health check

Mechanism to determine whether an instance is
healthy .

Auto-scaling

An example

In Summary

Simplicity

Reliability

Scalability

In Summary

Simplicity Minimal network communication (compared to other
distributed systems), less impacted by fallacies.

Reliability

Scalability

In Summary

Simplicity Minimal network communication (compared to other
distributed systems), less impacted by fallacies.

Reliability Traffic is spread to various services, still partially
operational if one goes down. Auto-scaling allows for
basic replication.

Scalability

In Summary

Simplicity Minimal network communication (compared to other
distributed systems), less impacted by fallacies.

Reliability Traffic is spread to various services, still partially
operational if one goes down. Auto-scaling allows for
basic replication.

Scalability Auto-scaling and load balancing allows individual
services to scale. However, the database is a
bottle-neck .

	Fallacies

