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Question

What is the problem?



Database



Disclaimer

This is not a database course.
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Question

What is replication?



Definition 1. Replication

Data copied across multiple different machines.





Definition 2. Replica

Database node which stores a copy of the data.
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Question

How do we replicate our data?



First approach

Leader-Follower Replication
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Definition 3. Replication Lag

The time taken for replicas to update stale data.







Eventually, all replicas must become consistent

The system is eventually consistent .



Eventual Consistency

Problems?
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Definition 4. Read-your-writes Consistency

Users always see the updates that they have made.
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Definition 5. Monotonic Reads

Once a user reads an updated value, they don’t later

see the old value.



Summary

• Leader-follower databases allow reads to
scale more effectively.

• Asynchronous propagation weakens
consistency to eventually consistent .

• Leader-follower databases still have a leader
write bottle-neck .



Second approach

Multi-leader Replication
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Answer

Write conflicts





Where possible

Avoid write conflicts





Where impossible

Convergence
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Resolving Conflicts

On Write When a conflict is first noticed, take
proactive resolution action.

On Read When a conflict is next read, ask for a
resolution.



Third Approach

Leaderless Replication





How do they work?

Each read/write is sent to multiple replicas.
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How do we know it’s consistent?

Answer

Quorum Reads and Writes



Quorum Consistency

w + r > n

n total replicas
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Question

What about write conflicts?

Answer

Same problem as with Multi-leader replication.
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and simpliest.

• Replication introduces eventual consistency .

• Multi-leader replication scales writes as well
as reads but introduces write conflicts .

• Leaderless replication is another approach
which keeps the problems of multi-leader.
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Definition 6. Partitioning

Split the data of a system onto multiple nodes.

These nodes are partitions .





Question

How should we decide which data is stored
where?
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Answer

Over time some partitions become inactive,
while others receive almost all load.
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How should we decide which data is stored
where?

Answer

Maximize spread of requests, avoiding skewing .
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What is the problem with this?

Answer

Range queries are inefficient, i.e. get all
students between s4444444 and s4565656.



Question

How do we route queries?



Query-insensitive Load Balancer

Randomly route to any node, responsibility of
the node to re-route to the correct node.





Query-sensitive Load Balancer

A load balancer which understands which
queries should be forwarded to which node.





Client-aware Queries

Place the responsibility on clients to choose the
correct node.
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• Partitioning splits data across multiple
nodes.

• Requires a consistent method to chose
appropriate node.

• Partitioning by primary key can create
skewing .

• Partitioning by hash makes range queries
less efficient.

• Three approaches to routing requests .
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Disclaimer

We have ignored the hard parts of replication.
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