
Distributed Systems II

Software Architecture

Brae Webb & Richard Thomas

March 25, 2024



Distributed Systems Series

Distributed I Reliability and scalability of
stateless systems.

Distributed II Complexities of stateful
systems.

Distributed III Hard problems in distributed
systems.



Distributed Systems Series

Distributed I Reliability and scalability of
stateless systems.

Distributed II Complexities of stateful
systems.

Distributed III Hard problems in distributed
systems.



Previously in CSSE6400. . .



Question

What is the problem?



Database



Disclaimer

This is not a database course.





Question

How do we fix database scaling issues?



Question

How do we fix database scaling issues?

Answer

• Replication

• Partitioning

• Independent databases



Question

How do we fix database scaling issues?

Answer

• Replication

• Partitioning

• Independent databases



Question

How do we fix database scaling issues?

Answer

• Replication

• Partitioning

• Independent databases



Question

How do we fix database scaling issues?

Answer

• Replication

• Partitioning

• Independent databases



Question

What is replication?



Definition 1. Replication

Data copied across multiple different machines.





Definition 2. Replica

Database node which stores a copy of the data.



Question

What are the advantages of replication?



Question

What are the advantages of replication?

Answer

• Scale our database to cope with higher loads.

• Provide fault tolerance from a single
instance failure.

• Locate instances closer to end-users .



Question

What are the advantages of replication?

Answer

• Scale our database to cope with higher loads.

• Provide fault tolerance from a single
instance failure.

• Locate instances closer to end-users .



Question

What are the advantages of replication?

Answer

• Scale our database to cope with higher loads.

• Provide fault tolerance from a single
instance failure.

• Locate instances closer to end-users .



Question

How do we replicate our data?



First approach

Leader-Follower Replication





Leader-based Replication

On write Writes sent to leader, change is
propagated via change stream.

On read Any replica can be queried.



Leader-based Replication

On write Writes sent to leader, change is
propagated via change stream.

On read Any replica can be queried.





Propagating changes

Synchronous vs. Asynchronous









Synchronous Propagation

• Writes must propagate to all followers
before being successful.

• Any replica goes down, all replicas are
un-writeable.

• Writes must wait for propagation to all
replicas.



Synchronous Propagation

• Writes must propagate to all followers
before being successful.

• Any replica goes down, all replicas are
un-writeable.

• Writes must wait for propagation to all
replicas.



Synchronous Propagation

• Writes must propagate to all followers
before being successful.

• Any replica goes down, all replicas are
un-writeable.

• Writes must wait for propagation to all
replicas.



Asynchronous Propagation

• Writes don’t have to wait for propagation.

• If the leader goes down before propagating,
the write is lost .

• Replicas can have out-dated or stale data.



Asynchronous Propagation

• Writes don’t have to wait for propagation.

• If the leader goes down before propagating,
the write is lost .

• Replicas can have out-dated or stale data.



Asynchronous Propagation

• Writes don’t have to wait for propagation.

• If the leader goes down before propagating,
the write is lost .

• Replicas can have out-dated or stale data.



Definition 3. Replication Lag

The time taken for replicas to update stale data.







Eventually, all replicas must become consistent

The system is eventually consistent .



Eventual Consistency

Problems?



Brae Webb
@braewebb



Brae Webb
@braewebb



Brae Webb
@braewebb

Brae Webb
@braewebb





Definition 4. Read-your-writes Consistency

Users always see the updates that they have made.



Brae Webb
@braewebb

My fist post



Brae Webb
@braewebb

My fist post

Brae Webb
@braewebb

My first post



Brae Webb
@braewebb

My fist post

Brae Webb
@braewebb

My first post

Brae Webb
@braewebb

My fist post





Definition 5. Monotonic Reads

Once a user reads an updated value, they don’t later

see the old value.



Summary

• Leader-follower databases allow reads to
scale more effectively.

• Asynchronous propagation weakens
consistency to eventually consistent .

• Leader-follower databases still have a leader
write bottle-neck .



Second approach

Multi-leader Replication





Why multi-leader?

• If you have multiple leaders, you can write to
any, allowing writes to scale.

• A leader going down doesn’t prevent writes,
giving better fault-tolerance.



Why multi-leader?

• If you have multiple leaders, you can write to
any, allowing writes to scale.

• A leader going down doesn’t prevent writes,
giving better fault-tolerance.



Question

What might go wrong?



Question

What might go wrong?

Answer

Write conflicts





Where possible

Avoid write conflicts





Where impossible

Convergence



Convergence Strategies

• Assign each write a unique ID.

• Assign each leader replica a unique ID.

• Custom resolution logic.



Convergence Strategies

• Assign each write a unique ID.

• Assign each leader replica a unique ID.

• Custom resolution logic.



Convergence Strategies

• Assign each write a unique ID.

• Assign each leader replica a unique ID.

• Custom resolution logic.





Resolving Conflicts

On Write When a conflict is first noticed, take
proactive resolution action.

On Read When a conflict is next read, ask for a
resolution.



Third Approach

Leaderless Replication





How do they work?

Each read/write is sent to multiple replicas.







How are changes propagated?

• Read Repair

• Anti-Entropy Process



How are changes propagated?

• Read Repair

• Anti-Entropy Process



Question

How do we know it’s consistent?





Question

How do we know it’s consistent?



Question

How do we know it’s consistent?

Answer

Quorum Reads and Writes



Quorum Consistency

w + r > n

n total replicas

w amount of replicas to write to

r amount of replicas to read from



Quorum Consistency

2 + 2 > 3

n total replicas

w amount of replicas to write to

r amount of replicas to read from



Quorum Consistency

1 + 3 > 3

n total replicas

w amount of replicas to write to

r amount of replicas to read from



n total replicas

w amount of replicas to write to

r amount of replicas to read from



Question

What about write conflicts?



Question

What about write conflicts?

Answer

Same problem as with Multi-leader replication.







Summary

• Replication copies data to multiple replicas.

• Leader-based replication is most common
and simpliest.

• Replication introduces eventual consistency .

• Multi-leader replication scales writes as well
as reads but introduces write conflicts .

• Leaderless replication is another approach
which keeps the problems of multi-leader.



Summary

• Replication copies data to multiple replicas.

• Leader-based replication is most common
and simpliest.

• Replication introduces eventual consistency .

• Multi-leader replication scales writes as well
as reads but introduces write conflicts .

• Leaderless replication is another approach
which keeps the problems of multi-leader.



Summary

• Replication copies data to multiple replicas.

• Leader-based replication is most common
and simpliest.

• Replication introduces eventual consistency .

• Multi-leader replication scales writes as well
as reads but introduces write conflicts .

• Leaderless replication is another approach
which keeps the problems of multi-leader.



Summary

• Replication copies data to multiple replicas.

• Leader-based replication is most common
and simpliest.

• Replication introduces eventual consistency .

• Multi-leader replication scales writes as well
as reads but introduces write conflicts .

• Leaderless replication is another approach
which keeps the problems of multi-leader.



Summary

• Replication copies data to multiple replicas.

• Leader-based replication is most common
and simpliest.

• Replication introduces eventual consistency .

• Multi-leader replication scales writes as well
as reads but introduces write conflicts .

• Leaderless replication is another approach
which keeps the problems of multi-leader.



Question

How do we fix database scaling issues?



Question

How do we fix database scaling issues?

Answer

• Replication

• Partitioning

• Independent databases



Question

How do we fix database scaling issues?

Answer

• Replication

• Partitioning

• Independent databases



Definition 6. Partitioning

Split the data of a system onto multiple nodes.

These nodes are partitions .





Question

How should we decide which data is stored
where?





Question

What is the problem with this?



Question

What is the problem with this?

Answer

Over time some partitions become inactive,
while others receive almost all load.



Question

How should we decide which data is stored
where?



Question

How should we decide which data is stored
where?

Answer

Maximize spread of requests, avoiding skewing .



Question

Have we seen this before?



Question

Have we seen this before?

Answer

Hashing?



Question

What is the problem with this?



Question

What is the problem with this?

Answer

Range queries are inefficient, i.e. get all
students between s4444444 and s4565656.



Question

How do we route queries?



Query-insensitive Load Balancer

Randomly route to any node, responsibility of
the node to re-route to the correct node.





Query-sensitive Load Balancer

A load balancer which understands which
queries should be forwarded to which node.





Client-aware Queries

Place the responsibility on clients to choose the
correct node.





Summary

• Partitioning splits data across multiple
nodes.

• Requires a consistent method to chose
appropriate node.

• Partitioning by primary key can create
skewing .

• Partitioning by hash makes range queries
less efficient.

• Three approaches to routing requests .



Summary

• Partitioning splits data across multiple
nodes.

• Requires a consistent method to chose
appropriate node.

• Partitioning by primary key can create
skewing .

• Partitioning by hash makes range queries
less efficient.

• Three approaches to routing requests .



Summary

• Partitioning splits data across multiple
nodes.

• Requires a consistent method to chose
appropriate node.

• Partitioning by primary key can create
skewing .

• Partitioning by hash makes range queries
less efficient.

• Three approaches to routing requests .



Summary

• Partitioning splits data across multiple
nodes.

• Requires a consistent method to chose
appropriate node.

• Partitioning by primary key can create
skewing .

• Partitioning by hash makes range queries
less efficient.

• Three approaches to routing requests .



Summary

• Partitioning splits data across multiple
nodes.

• Requires a consistent method to chose
appropriate node.

• Partitioning by primary key can create
skewing .

• Partitioning by hash makes range queries
less efficient.

• Three approaches to routing requests .



Disclaimer

We have ignored the hard parts of replication.



Question

How do we fix database scaling issues?



Question

How do we fix database scaling issues?

Answer

• Replication

• Partitioning

• Independent databases



Question

How do we fix database scaling issues?

Answer

• Replication

• Partitioning

• Independent databases



Summary

• Replications

• Leader-based, multi-leader, and leaderless
• Eventual consistency
• Write conflicts

• Partitioning

• Consistent method to pick nodes for data
• Avoiding skewing



Summary

• Replications
• Leader-based, multi-leader, and leaderless

• Eventual consistency
• Write conflicts

• Partitioning

• Consistent method to pick nodes for data
• Avoiding skewing



Summary

• Replications
• Leader-based, multi-leader, and leaderless
• Eventual consistency

• Write conflicts

• Partitioning

• Consistent method to pick nodes for data
• Avoiding skewing



Summary

• Replications
• Leader-based, multi-leader, and leaderless
• Eventual consistency
• Write conflicts

• Partitioning

• Consistent method to pick nodes for data
• Avoiding skewing



Summary

• Replications
• Leader-based, multi-leader, and leaderless
• Eventual consistency
• Write conflicts

• Partitioning

• Consistent method to pick nodes for data
• Avoiding skewing



Summary

• Replications
• Leader-based, multi-leader, and leaderless
• Eventual consistency
• Write conflicts

• Partitioning
• Consistent method to pick nodes for data

• Avoiding skewing



Summary

• Replications
• Leader-based, multi-leader, and leaderless
• Eventual consistency
• Write conflicts

• Partitioning
• Consistent method to pick nodes for data
• Avoiding skewing


