
Event-Driven Architecture
Software Architecture

Richard Thomas

March 25, 2024



Definition 1. Event

Something that has happened or needs to happen.



Definition 2. Event Handling

Responding to notification of an event.



Definition 3. Asynchronous Communication

Sending a message to a receiver and not waiting for a

response.
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Definition 4. Event-Driven Architecture

Asynchronous distributed system that uses event pro-

cessing to coordinate actions in a larger business pro-

cess.



Event-Driven Architecture



Terminology

Initiating Event Starts the business process

Processing Event Indicates next step in the process can

be performed

Event Channel Holds events waiting to be processed

Event Handler Processes events
• Step, or part of a step, in the business process



Auction Example



Definition 5. Event Handler Cohesion Principle

Each event handler is a simple cohesive unit that per-

forms a single processing task.



Definition 6. Event Handler Independence Principle

Event handlers should not depend on the implemen-

tation of any other event handler.



Auction Example – Error Handling



Topologies

Broker All events received by event broker
• Notifies event handlers of events
• Event handlers send processing events when they
finish processing

Mediator Manages business process
• Event queue of initiating events
• Event mediator sends processing events to event
handlers

• Event handlers send async messages to mediator
to report process finished
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Broker Topology



Event Broker Façade

• Event handlers can register to listen for
events

• Receives events and directs them to the
correct channel



Mediator Topology



Sahara Mediator Topology



Extensibility

• New behaviour for existing event
Broker Implement event handler & register with broker

• Existing ignored event hooks

Mediator Implement event handler & modify mediator logic

• New event
Broker Implement event & event handler, create event

channel, modify broker façade
Mediator Implement event & event handler, modify

mediator logic
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• Events are saved permanently
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• Known steps in business process
• Easier sequencing of steps in business process
• “Exactly once” semantics
• eCommerce system
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• Very large number of events or handlers
• Handlers can ignore events
• Analysis of past activity
• Event sourcing
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Broker vs Mediator Topologies

Broker Advantages

• Scalability

• Reliability

• Extensibility

• Low coupling

Mediator Advantages

• Complex business process logic

• Error handling

• Maintain process state

• Error recovery
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Pros & Cons

Modularity Event Handlers

Extensibility

Reliability Event Handlers

Interoperability Events

Scalability Event Handlers

Security

Simplicity

Deployability

Testability Complex Interactions


