
Event-Driven Architecture
Software Architecture

Richard Thomas

March 25, 2024



Definition 1. Event

Something that has happened or needs to happen.



Definition 2. Event Handling

Responding to notification of an event.



Definition 3. Asynchronous Communication

Sending a message to a receiver and not waiting for a

response.



Responsiveness

• Synchronous Communication
• Send message
• Wait for response
• Continue processing

• Asynchronous Communication
• Send message
• Continue processing
• Optionally receive response
• Complex error handling



Responsiveness

• Synchronous Communication
• Send message
• Wait for response
• Continue processing

• Asynchronous Communication
• Send message
• Continue processing
• Optionally receive response
• Complex error handling



Definition 4. Event-Driven Architecture

Asynchronous distributed system that uses event pro-

cessing to coordinate actions in a larger business pro-

cess.



Event-Driven Architecture



Terminology

Initiating Event Starts the business process

Processing Event Indicates next step in the process can

be performed

Event Channel Holds events waiting to be processed

Event Handler Processes events
• Step, or part of a step, in the business process



Auction Example



Definition 5. Event Handler Cohesion Principle

Each event handler is a simple cohesive unit that per-

forms a single processing task.



Definition 6. Event Handler Independence Principle

Event handlers should not depend on the implemen-

tation of any other event handler.



Auction Example – Error Handling



Topologies

Broker All events received by event broker
• Notifies event handlers of events
• Event handlers send processing events when they
finish processing

Mediator Manages business process
• Event queue of initiating events
• Event mediator sends processing events to event
handlers

• Event handlers send async messages to mediator
to report process finished



Topologies

Broker All events received by event broker
• Notifies event handlers of events
• Event handlers send processing events when they
finish processing

Mediator Manages business process
• Event queue of initiating events
• Event mediator sends processing events to event
handlers

• Event handlers send async messages to mediator
to report process finished



Broker Topology



Event Broker Façade

• Event handlers can register to listen for
events

• Receives events and directs them to the
correct channel



Mediator Topology



Sahara Mediator Topology



Extensibility

• New behaviour for existing event
Broker Implement event handler & register with broker

• Existing ignored event hooks

Mediator Implement event handler & modify mediator logic

• New event
Broker Implement event & event handler, create event

channel, modify broker façade
Mediator Implement event & event handler, modify

mediator logic



Extensibility

• New behaviour for existing event
Broker Implement event handler & register with broker

• Existing ignored event hooks

Mediator Implement event handler & modify mediator logic

• New event
Broker Implement event & event handler, create event

channel, modify broker façade
Mediator Implement event & event handler, modify

mediator logic



Scalability

• Event handlers deployed independently
• Scaled independently to manage load

• Event broker federated
• Distributed across multiple compute nodes

• Event mediators for different domains
• Distributes loads by domain
(e.g. browse & search, account, & order events)
• Scaled independently to manage load



Scalability

• Event handlers deployed independently
• Scaled independently to manage load

• Event broker federated
• Distributed across multiple compute nodes

• Event mediators for different domains
• Distributes loads by domain
(e.g. browse & search, account, & order events)
• Scaled independently to manage load



Scalability

• Event handlers deployed independently
• Scaled independently to manage load

• Event broker federated
• Distributed across multiple compute nodes

• Event mediators for different domains
• Distributes loads by domain
(e.g. browse & search, account, & order events)
• Scaled independently to manage load



Queues

• Channels can be implemented as queues
• FIFO behaviour

• Multiple front of queue pointers
• For each event handler

• Event removed when event handlers finish
• Retry if a handler fails

• Events persist until removed
• Recovery from broker failure



Queues

• Channels can be implemented as queues
• FIFO behaviour

• Multiple front of queue pointers
• For each event handler

• Event removed when event handlers finish
• Retry if a handler fails

• Events persist until removed
• Recovery from broker failure



Queues

• Channels can be implemented as queues
• FIFO behaviour

• Multiple front of queue pointers
• For each event handler

• Event removed when event handlers finish
• Retry if a handler fails

• Events persist until removed
• Recovery from broker failure



Queues

• Channels can be implemented as queues
• FIFO behaviour

• Multiple front of queue pointers
• For each event handler

• Event removed when event handlers finish
• Retry if a handler fails

• Events persist until removed
• Recovery from broker failure



Streams

• Channels can be implemented as streams
• Events are saved permanently

• Handlers notified when event added to stream
• Observer pattern

• Handlers process events at their own pace
• Cardiac arrest alarm vs. heart rate graph

• Events history
• Redo processing
• Review processing activities



Streams

• Channels can be implemented as streams
• Events are saved permanently

• Handlers notified when event added to stream
• Observer pattern

• Handlers process events at their own pace
• Cardiac arrest alarm vs. heart rate graph

• Events history
• Redo processing
• Review processing activities



Streams

• Channels can be implemented as streams
• Events are saved permanently

• Handlers notified when event added to stream
• Observer pattern

• Handlers process events at their own pace
• Cardiac arrest alarm vs. heart rate graph

• Events history
• Redo processing
• Review processing activities



Streams

• Channels can be implemented as streams
• Events are saved permanently

• Handlers notified when event added to stream
• Observer pattern

• Handlers process events at their own pace
• Cardiac arrest alarm vs. heart rate graph

• Events history
• Redo processing
• Review processing activities



Queues vs Streams

• Queue
• Known steps in business process
• Easier sequencing of steps in business process
• “Exactly once” semantics
• eCommerce system

• Stream
• Very large number of events or handlers
• Handlers can ignore events
• Analysis of past activity
• Event sourcing



Queues vs Streams

• Queue
• Known steps in business process
• Easier sequencing of steps in business process
• “Exactly once” semantics
• eCommerce system

• Stream
• Very large number of events or handlers
• Handlers can ignore events
• Analysis of past activity
• Event sourcing



Broker vs Mediator Topologies

Broker dumb pipe

Broker events have occurred

Mediator smart pipe

Mediator events are commands to process



Broker vs Mediator Topologies

Broker dumb pipe

Broker events have occurred

Mediator smart pipe

Mediator events are commands to process



Broker vs Mediator Topologies

Broker Advantages

• Scalability

• Reliability

• Extensibility

• Low coupling

Mediator Advantages

• Complex business process logic

• Error handling

• Maintain process state

• Error recovery



Broker vs Mediator Topologies

Broker Advantages

• Scalability

• Reliability

• Extensibility

• Low coupling

Mediator Advantages

• Complex business process logic

• Error handling

• Maintain process state

• Error recovery



Pros & Cons

Modularity Event Handlers

Extensibility

Reliability Event Handlers

Interoperability Events

Scalability Event Handlers

Security

Simplicity

Deployability

Testability Complex Interactions


