
Infrastructure as Code
Software Architecture

Brae Webb & Richard Thomas

March 17, 2025



Infrastructure as Code

How did we get here?



Pre-2000

The Iron Age



Iron Age



Iron Age



Scaling



Introducing...

The Cloud Age



The Cloud Age



When faced with complexity

Automate it!



The larger story

Server Config Config Management

Application Config Config Files
Provisioning Infrastructure Code

Building Continuous Integration
Deployment Continuous Deployment

Testing Automated Tests
Database Administration Schema Migration

Specifications Behaviour Driven Development



The larger story

Server Config Config Management
Application Config Config Files

Provisioning Infrastructure Code
Building Continuous Integration

Deployment Continuous Deployment
Testing Automated Tests

Database Administration Schema Migration
Specifications Behaviour Driven Development



The larger story

Server Config Config Management
Application Config Config Files

Provisioning Infrastructure Code

Building Continuous Integration
Deployment Continuous Deployment

Testing Automated Tests
Database Administration Schema Migration

Specifications Behaviour Driven Development



The larger story

Server Config Config Management
Application Config Config Files

Provisioning Infrastructure Code
Building Continuous Integration

Deployment Continuous Deployment
Testing Automated Tests

Database Administration Schema Migration
Specifications Behaviour Driven Development



The larger story

Server Config Config Management
Application Config Config Files

Provisioning Infrastructure Code
Building Continuous Integration

Deployment Continuous Deployment

Testing Automated Tests
Database Administration Schema Migration

Specifications Behaviour Driven Development



The larger story

Server Config Config Management
Application Config Config Files

Provisioning Infrastructure Code
Building Continuous Integration

Deployment Continuous Deployment
Testing Automated Tests

Database Administration Schema Migration
Specifications Behaviour Driven Development



The larger story

Server Config Config Management
Application Config Config Files

Provisioning Infrastructure Code
Building Continuous Integration

Deployment Continuous Deployment
Testing Automated Tests

Database Administration Schema Migration

Specifications Behaviour Driven Development



The larger story

Server Config Config Management
Application Config Config Files

Provisioning Infrastructure Code
Building Continuous Integration

Deployment Continuous Deployment
Testing Automated Tests

Database Administration Schema Migration
Specifications Behaviour Driven Development



Definition 0. Infrastructure Code
Code that provisions and manages infrastructure resources .



Definition 0. Infrastructure Code
Code that provisions and manages infrastructure resources .

Definition 0. Infrastructure Resources
Compute resources, networking resources, and storage resources.



Infrastructure Code

Shell scripts

Python scripts

Ansible

Terraform



Shell Scripts

1 #!/bin/bash

3 SG=$(aws ec2 create-security-group ...)

5 aws ec2 authorize-security-group-ingress --group-id "$SG"

7 INST=$(aws ec2 run-instances --security-group-ids "$SG" \
8 --instance-type t2.micro)



Python

1 import boto3

3 def create_instance():
4 ec2_client = boto3.client("ec2", region_name="us-east-1")
5 response = ec2.create_security_group(...)
6 security_group_id = response['GroupId']

8 data = ec2.authorize_security_group_ingress(...)

10 instance = ec2_client.run_instances(
11 SecurityGroups=[security_group_id],
12 InstanceType="t2.micro",
13 ...
14 )



Terraform

1 resource "aws_instance" "hextris-server" {
2 instance_type = "t2.micro"
3 security_groups = [aws_security_group.hextris-server.name]
4 ...
5 }

7 resource "aws_security_group" "hextris-server" {
8 ingress {
9 from_port = 80

10 to_port = 80
11 ...
12 }
13 ...
14 }



Question

Notice anything different?



The main difference

Imperative vs. Declarative



Declarative IaC

• Define your desired infrastructure state
• as code

• Engine interprets difference between the
desired and actual state

• Modifying infrastructure to deliver desired state



Infrastructure Code
• Provisions and manages infrastructure resources .

• Only one part of the movement to automate the complexities
of development.

• Ranges from simple shell scripts up to. . . ?
• Tendency to be declarative.



Infrastructure Code
• Provisions and manages infrastructure resources .
• Only one part of the movement to automate the complexities

of development.

• Ranges from simple shell scripts up to. . . ?
• Tendency to be declarative.



Infrastructure Code
• Provisions and manages infrastructure resources .
• Only one part of the movement to automate the complexities

of development.
• Ranges from simple shell scripts up to. . . ?

• Tendency to be declarative.



Infrastructure Code
• Provisions and manages infrastructure resources .
• Only one part of the movement to automate the complexities

of development.
• Ranges from simple shell scripts up to. . . ?
• Tendency to be declarative.



Typo?

Infrastructure Code ̸= Infrastructure as Code



Definition 0. Infrastructure as Code
Following the same good coding practices to manage
Infrastructure Code as standard code.



Warning!

Infrastructure as Code still early and quite bad .



Question

What are good coding practices?



Good Coding Practice #1

Everything as Code



1 #!/bin/bash

3 ./download-dependencies
4 ./build-resources
5 cp -r output/* artifacts/



1 #!/bin/bash

3 ./download-dependencies
4 ./build-resources
5 cp -r output/* artifacts/

$ cp: directory artifacts does not exist



1 resource "aws_instance" "hextris-server" {
2 instance_type = "t2.micro"
3 security_groups = ["sg-6400"]
4 ...
5 }



1 resource "aws_instance" "hextris-server" {
2 instance_type = "t2.micro"
3 security_groups = [aws_security_group.hextris-server.name]
4 ...
5 }

7 resource "aws_security_group" "hextris-server" {
8 ingress {
9 from_port = 80

10 to_port = 80
11 ...
12 }
13 ...
14 }



Everything as code avoids

Configuration drift



Configuration drift creates

Snowflakes



Benefits

1. Reproducible



Good Coding Practice #2

Version Control



Benefits

1. Restorable
2. Accountable



Good Coding Practice #3

Automation



Benefits

1. Consistent



Good Coding Practice #4

Code Reuse



Benefits

1. Better1 code
2. Less work
3. Only one place to update (or verify)

1generally



Good Coding Practice #5

Testing



Test Pyramid

Unit Testing

Integration Testing

End-to-end Testing



IaC Test Pyramid

Integration Testing

End-to-end Testing

validate compliance



1 func TestTerraformAwsInstance(t *testing.T) {
2 terraformOptions := terraform.WithDefault(t, &terraform.Options{
3 TerraformDir: "../week03/",
4 })

6 defer terraform.Destroy(t, terraformOptions)
7 terraform.InitAndApply(t, terraformOptions)

9 publicIp := terraform.Output(t, terraformOptions, "public_ip")
10 url := fmt.Sprintf("http://%s:8080", publicIp)

12 http_helper.HttpGetWithCustomValidation(t, url, nil, 200,
13 func(code, resp) { code == 200 &&
14 strings.Contains(resp, "hextris")})
15 }



1 Feature: Define AWS Security Groups

3 Scenario: Only selected ports should be publicly open
4 Given I have AWS Security Group defined
5 When it contains ingress
6 Then it must only have tcp protocol and port 22,443 for 0.0.0.0/0



Benefits

1. Trust



Prac Next Week

Learn how to use Terraform to write IaC and
deploy resources on AWS.


