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Infrastructure as Code

How did we get here?



Pre-2000

The Iron Age



Iron Age



Iron Age



Scaling



Introducing...

The Cloud Age



The Cloud Age



When faced with complexity

Automate it!



The larger story
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Provisioning Infrastructure Code

Building Continuous Integration
Deployment Continuous Deployment
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Definition 0. Infrastructure Code
Code that provisions and manages infrastructure resources .



Definition 0. Infrastructure Code
Code that provisions and manages infrastructure resources .

Definition 0. Infrastructure Resources
Compute resources, networking resources, and storage resources.



Infrastructure Code

Shell scripts

Python scripts

Ansible

Terraform



Shell Scripts

1 #!/bin/bash

3 SG=$(aws ec2 create-security-group ...)

5 aws ec2 authorize-security-group-ingress --group-id "$SG"

7 INST=$(aws ec2 run-instances --security-group-ids "$SG" \
8 --instance-type t2.micro)



Python

1 import boto3

3 def create_instance():
4 ec2_client = boto3.client("ec2", region_name="us-east-1")
5 response = ec2.create_security_group(...)
6 security_group_id = response['GroupId']

8 data = ec2.authorize_security_group_ingress(...)

10 instance = ec2_client.run_instances(
11 SecurityGroups=[security_group_id],
12 InstanceType="t2.micro",
13 ...
14 )



Terraform

1 resource "aws_instance" "hextris-server" {
2 instance_type = "t2.micro"
3 security_groups = [aws_security_group.hextris-server.name]
4 ...
5 }

7 resource "aws_security_group" "hextris-server" {
8 ingress {
9 from_port = 80

10 to_port = 80
11 ...
12 }
13 ...
14 }



Question

Notice anything different?



The main difference

Imperative vs. Declarative



Declarative IaC

• Define your desired infrastructure state
• as code

• Engine interprets difference between the
desired and actual state

• Modifying infrastructure to deliver desired state



Infrastructure Code
• Provisions and manages infrastructure resources .

• Only one part of the movement to automate the complexities
of development.

• Ranges from simple shell scripts up to. . . ?
• Tendency to be declarative.
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Infrastructure Code
• Provisions and manages infrastructure resources .
• Only one part of the movement to automate the complexities

of development.
• Ranges from simple shell scripts up to. . . ?
• Tendency to be declarative.



Typo?

Infrastructure Code ̸= Infrastructure as Code



Definition 0. Infrastructure as Code
Following the same good coding practices to manage
Infrastructure Code as standard code.



Warning!

Infrastructure as Code still early and quite bad .



Question

What are good coding practices?



Good Coding Practice #1

Everything as Code



1 #!/bin/bash

3 ./download-dependencies
4 ./build-resources
5 cp -r output/* artifacts/



1 #!/bin/bash

3 ./download-dependencies
4 ./build-resources
5 cp -r output/* artifacts/

$ cp: directory artifacts does not exist



1 resource "aws_instance" "hextris-server" {
2 instance_type = "t2.micro"
3 security_groups = ["sg-6400"]
4 ...
5 }



1 resource "aws_instance" "hextris-server" {
2 instance_type = "t2.micro"
3 security_groups = [aws_security_group.hextris-server.name]
4 ...
5 }

7 resource "aws_security_group" "hextris-server" {
8 ingress {
9 from_port = 80

10 to_port = 80
11 ...
12 }
13 ...
14 }



Everything as code avoids

Configuration drift



Configuration drift creates

Snowflakes



Benefits

1. Reproducible



Good Coding Practice #2

Version Control



Benefits

1. Restorable
2. Accountable



Good Coding Practice #3

Automation



Benefits

1. Consistent



Good Coding Practice #4

Code Reuse



Benefits

1. Better1 code
2. Less work
3. Only one place to update (or verify)

1generally



Good Coding Practice #5

Testing



Test Pyramid

Unit Testing

Integration Testing

End-to-end Testing



IaC Test Pyramid

Integration Testing

End-to-end Testing

validate compliance



1 func TestTerraformAwsInstance(t *testing.T) {
2 terraformOptions := terraform.WithDefault(t, &terraform.Options{
3 TerraformDir: "../week03/",
4 })

6 defer terraform.Destroy(t, terraformOptions)
7 terraform.InitAndApply(t, terraformOptions)

9 publicIp := terraform.Output(t, terraformOptions, "public_ip")
10 url := fmt.Sprintf("http://%s:8080", publicIp)

12 http_helper.HttpGetWithCustomValidation(t, url, nil, 200,
13 func(code, resp) { code == 200 &&
14 strings.Contains(resp, "hextris")})
15 }



1 Feature: Define AWS Security Groups

3 Scenario: Only selected ports should be publicly open
4 Given I have AWS Security Group defined
5 When it contains ingress
6 Then it must only have tcp protocol and port 22,443 for 0.0.0.0/0



Benefits

1. Trust



Prac Next Week

Learn how to use Terraform to write IaC and
deploy resources on AWS.


