
Layered Architecture

Software Architecture

Richard Thomas

February 19, 2024



Ogres are like onions.

Orgres have layers , onions have layers...
You get it? We both have layers.

- Shrek



In the beginning...

There was the big ball of mud [Foote and Yoder, 1997]



Figure: Image from “How to Avoid Spaghetti Code”[Gulsah, 2020].

https://tech.zensurance.com/posts/spaghetti-code
https://tech.zensurance.com/posts/spaghetti-code


Problem

Any change can affect any other part of the
software.



“Solution”

Modularity

1

1From https://pixabay.com/illustrations/lego-building-game-toy-drawing-3388163/.

https://pixabay.com/illustrations/lego-building-game-toy-drawing-3388163/


Problem

Lack of discipline lets any module communicate
with any other module.

2

2From https://pixabay.com/photos/lego-to-play-to-build-module-1629073/.

https://pixabay.com/photos/lego-to-play-to-build-module-1629073/


“Solution”

Layered Architecture



Presentation Layer

Business Layer

Persistence Layer

Database Layer

Figure: Traditional 4-tier, layered architecture.



Presentation Layer

Business Layer

Persistence Layer

Database Layer

Figure: Traditional 4-tier, layered architecture.



Presentation Layer

Business Layer

Persistence Layer

Database Layer

Figure: Traditional 4-tier, layered architecture.



Presentation Layer

Business Layer

Persistence Layer

Database Layer

Figure: Traditional 4-tier, layered architecture.



Presentation Layer

Business Layer

Persistence Layer

Database Layer

Figure: Traditional 4-tier, layered architecture.



Question

Can you identify an example of layered
architecture?



Question

Can you identify an example of layered
architecture?

Answer

Pick any website.



Definition 1. Layer Isolation Principle

Layers should not depend on implementation details

of another layer. Layers should only communicate

through well defined interfaces (contracts).



Definition 2. Neighbour Communication Principle

Components can communicate across layers only

through directly neighbouring layers.



Definition 3. Downward Dependency Principle

Higher-level layers depend on lower layers, but lower-

level layers do not depend on higher layers.



Definition 4. Upward Notification Principle

Lower layers communicate with higher layers using

general interfaces, callbacks and/or events. Depen-

dencies are minimised by not relying on specific de-

tails published in a higher layer’s interface.



Definition 5. Sidecar Spanning Principle

A sidecar layer contains interfaces that support com-

plex communication between layers (e.g. design pat-

terns like the observer pattern) or external services

(e.g. a logging framework).



Good architectural design...

Applies these principles to deliver simple,
modular designs that support modifiability.



Figure: J2EE layered architecture (from Requirements Analysis and System Design
[Maciaszek, 2007]).



Figure: PCBMER layered architecture with sidecars (adapted from Requirements Analysis

and System Design[Maciaszek, 2007]).



PCBMER Layers

Presentation Displays bean data, implements UI logic, and updates beans.

Controller Implements application specific logic and instantiates beans.

Bean Data transfer objects used by the Presentation layer.

Mediator Manages business transactions, enforces business rules,
instantiates business objects in the Entity layer, and manages
the entity memory cache.

Entity Classes representing persistent business objects.

Resource Manages interactions with external persistent data sources.



PCBMER Layers

Presentation Displays bean data, implements UI logic, and updates beans.

Controller Implements application specific logic and instantiates beans.

Bean Data transfer objects used by the Presentation layer.

Mediator Manages business transactions, enforces business rules,
instantiates business objects in the Entity layer, and manages
the entity memory cache.

Entity Classes representing persistent business objects.

Resource Manages interactions with external persistent data sources.



PCBMER Layers

Presentation Displays bean data, implements UI logic, and updates beans.

Controller Implements application specific logic and instantiates beans.

Bean Data transfer objects used by the Presentation layer.

Mediator Manages business transactions, enforces business rules,
instantiates business objects in the Entity layer, and manages
the entity memory cache.

Entity Classes representing persistent business objects.

Resource Manages interactions with external persistent data sources.



PCBMER Layers

Presentation Displays bean data, implements UI logic, and updates beans.

Controller Implements application specific logic and instantiates beans.

Bean Data transfer objects used by the Presentation layer.

Mediator Manages business transactions, enforces business rules,
instantiates business objects in the Entity layer, and manages
the entity memory cache.

Entity Classes representing persistent business objects.

Resource Manages interactions with external persistent data sources.



PCBMER Layers

Presentation Displays bean data, implements UI logic, and updates beans.

Controller Implements application specific logic and instantiates beans.

Bean Data transfer objects used by the Presentation layer.

Mediator Manages business transactions, enforces business rules,
instantiates business objects in the Entity layer, and manages
the entity memory cache.

Entity Classes representing persistent business objects.

Resource Manages interactions with external persistent data sources.



PCBMER Layers

Presentation Displays bean data, implements UI logic, and updates beans.

Controller Implements application specific logic and instantiates beans.

Bean Data transfer objects used by the Presentation layer.

Mediator Manages business transactions, enforces business rules,
instantiates business objects in the Entity layer, and manages
the entity memory cache.

Entity Classes representing persistent business objects.

Resource Manages interactions with external persistent data sources.



References

[Foote and Yoder, 1997] Foote, B. and Yoder, J. (1997).
Big ball of mud.
Pattern languages of program design, 4:654–692.

[Gulsah, 2020] Gulsah (2020).
How to avoid spaghetti code.
https://tech.zensurance.com/posts/spaghetti-code.
note = ”Accessed: 2022-02-18”.

[Maciaszek, 2007] Maciaszek, L. A. (2007).
Requirements Analysis and System Design.
Addison-Wesley Harlow, 3rd edition.

https://tech.zensurance.com/posts/spaghetti-code

