Microkernel Architecture

Software Architecture

Richard Thomas

March 4, 2024

So far. ..
Simplicity — Monolith, Pipeline
Modularlity — Layered, Pipeline

Definition 1. Extensibility

Features or extensions can be easily added to the soft-
ware over its lifespan.

Question

How easy is it to extend Monolith, Layered or
Pipeline?

Question

How easy is it to extend Monolith, Layered or
Pipeline?

Answer

Monolith — Everything in one container ¢=?

Question

How easy is it to extend Monolith, Layered or
Pipeline?

Answer

-

Monolith — Everything in one container —¢=?

Layered — Typically all layers =2

Question

How easy is it to extend Monolith, Layered or
Pipeline?

Answer

-

Monolith — Everything in one container —¢=?

Layered — Typically all layers =2
Pipeline — Create a new filter A1

Definition 2. Interoperability

Software can easily share information and exchange
data with internal components and other systems.

Question

What about interoperability”

Question

What about interoperability?

Answer

Monolith — Everything in one container
e Internal & External <=2

Question

What about interoperability?

Answer

Monolith — Everything in one container
o Internal @ External =2
Lavered — Nearest Neighbour

e Internal &~ External <=2

Question

What about interoperability?

Answer
Monolith — Everything in one container
o Internal @ External =2
Lavered — Nearest Neighbour
e Internal @° External <=

Pipeline — Standard Interface

e Internal % External ¢=2

Question
What if I want simplicity, extensibility and
interoperability?

Question

What if I want simplicity, extensibility and
interoperability?

Answer

Consider Microkernel Architecture

§ Microkernel
Architecture

Definition 3. Microkernel Architecture

Core system providing interfaces that allow plug-ins to extend its functional-
ity.

Plug-In 1 Core System P'[Cl‘gl'lnlz
I 4 ontainer]
[Container] «4— Plug-In Interface — [Container] |— Plugin Interface — v ‘
Delivers one extension to the system. Delivers base/core functionality. Dl @ segene erimsem i {iz

system

Definition 4. Registry
Tracks which plug-ins are available to the core system
and how to access them.

Loading Plug-ins

Static Loading when application starts
Dynamic Loading as needed at run-time

Registry designed for the selected strategy

Question

Can you think of a microkernel architecture?

Question

Can you think of a microkernel architecture?

Answer

Web Browser?

Definition 5. Independent Plug-in Principle

Plug-ins should be independent, with no dependencies
on other plug-ins. The only dependency on the core
system is through the plug-in interface.

Definition 6. Standard Interface Principle

There should be a single interface that defines how
the core system uses plug-ins.

Question

Does a plug-in architecture equate to a
microkernel architecture?

Question

Does a plug-in architecture equate to a
microkernel architecture?

Answer

What about IntelliJ?

Plug-ins with Separate Databases
Plug-ins cannot access core system data

Core system may pass data to the plug-in

Plug-ins may have their own persistent data

Plug-In 1 Core System Plug-in 2
[Container] 1
Lcontans] 4 Plug-In Interface —{ e — Plug-In Interface —
Delivers one extension to the system. Delivers base/core functionality. BeliEse Sef;‘;:n’:‘e““’” @

Plug-In 1 Database Core Sys[tcziglgatabase Plug-In 2 Database

[Container] [Container]
Core system data storage
management.

Plug-In 1 data storage management.

Plug-In 2 data storage management.

Plug-ins as External Services

® Need communication protocol

® Registry records communication contract
® e.g. URL of the REST endpoint & data passed to it

External Plug-In 2

External Plug-In 1 Core System o ool
rom Application
from Application from Application
[Container] <— REST—| — [Container] — |—REST —M (eer e
Delivers one extension to the system. Delivers base/core functionality. DaEsa secsynsctjeﬁtenslon i
Plug-In Service 1 Core System Plug-In Service 2

[Deployment Node] [Deployment Node] [Deployment Node]

Adapting Non-Conforming Interfaces

Plug-In 2
from Application
[Container]
Delivers a second extension to the
system

Plug-in Interface

Adapter Plug-In

Plug-In 1 Core System
from Application
from Application from Application T
[Container] 4— Plug-n Interface — [Container] — Plug-In Interface —p
Delivers one extension to the system. Delivers base/core functionality. Adapts interface of third party

service.

Application
[Deployment Node]

Third Party Service

[Software System]

Service provided by a third party,
used as a plug-in.

External Service
[Deployment Node]

§ Technical
Domain Partitioning

Technical Partitioning

Presentation Layer
from Application
Contsiner]

User interaction layer.

Business Layer
rom Applcation
Container]

Application logic layer.

Persistence Layer
from applcation
Container]

Data storage management layer.

Application
Deployment Node] |

Database Layer

[y —
[Container]

Data storage mect

Depioyment Nod]

Technical Partitioning

Presentation Layer
from Apolcation
Contsiner]

User interaction layer.

v

Business Layer
m Applicston
Container]

Application logic layer.

Persistence Layer
from applcation
Container]

Data storage management layer.

Application
Deployment Node] |

Database Layer
[y—
Container]

Data storage mechanism.

DBMS

Deployment Node]

Domain Partitioning

Product Purchasing Product Fulfilment
from Domain Partitioning from Domain Partitioning
[Container] [Container]

Enables customers to find and

purchase products. customer orders,

Customer Account | Data Mining

Management from Domain Parcioning
from Domain Partitioning | [Container]
[Container]

Mine customer behaviour data to
Customers can manage their account | e S s

tails.

Application N
[Deployment Node]

Database
[Software System]

Data storage manageme

DBMS

[Deployment Node]

Manage processing and fulfilment of

Inventory Management
from Domain Partitioning

iner]

Maintain inventory levels.

I Reporting
| from Domain Partitioning
| [Container)

| | Generate reports on sales activties.

Question

Is the microkernel architecture suited to
technical or domain partitioning?

Question

[s the microkernel architecture suited to
technical or domain partitioning?

Answer

Core system can be partitioned either way:.

Domain Standard Interfaces

Core System
[Deployment Node]

Application
[Deployment Node]

Plug-In Interface
1

—

_ Plug-In Interface
2

-

Plug-In 1
from Application
[Container]

Delivers one extension to the system.

Plug-In 2
from Application
[Container]
Delivers a second extension to the
system

Plug-In 3
from Application

N (Container]

Delivers a third extension to the
system

Plug-Ins
[Deployment Node]

Distributed Microkernel
e Partitions in the core system can be distributed
¢ Technical or domain partitions
¢ Plug-ins could also be distributed

UI Plug-In 2

§ Media Server
Example

Question

What types of systems could use a microkernel
architecture?

Question

What types of systems could use a microkernel
architecture?

Answer

® Social media aggregator
e JoT management & processing

e Media server

Media Server & Renderer

Library Database

[Software System]

Stores metadata about media files.

Media Renderer Media Server
o q _ Watch Media — [Software System] | Ohtam‘;‘Me'Jm o _p [Software System]
& onsumer Device or software that plays media. - Delivers media to renderers.

[Person]

Someone who watches media via
the server.

File System

Location of media files.

Domain Colour Key

Container, audio Container, core Container, libmgt Container, nav Container, ui

Container, video Element

Software System, db

Software System, file Relationship

Media Renderer

- Register

. & - _

Core Rendering System Ul Plug-Ins
Browse & Watch [Container]
H —P [Container]
Media Consumer Media Provide navigation and playback of i .
[P 1 media libra User interface extensions.
erson) . q .
Someone who watches media via User Interaction

the server.

Display Library

\
A 4

Media Server
[Software System]

Delivers media to renderers.

Core Rendering System Components

Play Video Stream Play Audio Stream User Interface Plug-In Registry
[Component] [Component] [Component] [Component]
N \ / ry N [
AN | / ! N\

N 7 ! N |
! , Browse & Watch N |
Play Video Play Audio X Media <

e o Display Library User Interaction Regrtey

AN | / AN
\ / \ |
U " N |
Media Server Ul Plug-Ins
[Software System] [Container]

Media Consumer

[Person]

Delivers media to renderers. User interface extensions.

Someone who watches media via
the server.

Media Server

File System

[Software System]

| Location of media files.

| Video Streaming Plug-Ins

[Container]

audio data

o Decoding of different types of video
h | data . ~
'S
Obtain video data
‘ stream
|
|
| audio
data stream
. . - ~
| Audio Streaming Plug-Ins 4 -

[Container]

Decoding of different types of audio
data

Renderer
[Software System]

Me:

Library Database

[Software System]

BT E TS Stores metadata about media files.

| Retrieve
Metadata

y Librar
| Navigation Plug-Ins
| {Container]

- - Extensions to customise library
| - v navigation.
A 4 X _ -7

_ Navigate
Core Media Server
[Container]
Manage and stream media library.
w .
~ — , Library Management
~ Plug-Ins

[Container]

Extensions for managing media
library

Core Media Server Components

—~ — — — — — DDisplylibray— — — — — — — — —

__ PlayVideo __
Stream

v U

| P

<«

Library Management Library Navigation Video Streaming Audio Streaming _ play Audio
[Component] [Component] [Component] [Component] Stream
| |
Scrape Metadata Navigate Obtaln video data Obtain audio
| | | |
v v v v
Library Management
n:’l \ 8 Navigation Plug-Ins Video Streaming Plug-Ins Audio Streaming Plug-Ins
ug-Ins [Container] [Container] [Container]
[Container]
Extensions to customise library Decoding of different types of video Decoding of different types of audio
Extensions for managing media navigation. sty Py
library
~ \ / e
~ -
Register Register -
Register e < Register
-

N /
ot e

Plug-In Registry

IComponent]

Core Media Server

Media Library Management Components

Core Media Server

[Container]

Manage and stream media library.

7 [N
e N
Scrape Metadata Scrape Metadata Scrape Metadata
/ N
» v a
TMDB Scraper TVDB Scraper MusicBrainz Scraper

[Component] [Component] [Component]

Scrape Metadata Interface

<<interface=>
ScrapeMetaData

+ scrape(medialata - MediaData) - MetaData

L~ W =

, ~

MetaData

+ getdSON() - JSON
+ store(json : JSON) - void

MusicBrainzScraper

MediaData

+ scrape(mediaData : MediaData) : MetaData

+ scrape(mediaData : MediaData) : MetaData

+getJSON() : JSON
+ store(json . JSON) : void

|
|
|
|
|
|
TvdbScraper I
|
|
|
|
|
|
|

TmdbScraper

+ scrape(medialata . MediaData) : MetaData

System Deployment

o Retrieve [
Metadata -
|
|
Library Management S
Y 8 Navigation Plug-Ins
Plug-Ins o ——
rary Database from Media Server " Teomainen
[Software System] a-| — TContainer]
Extensions to customise library
Stores metadata about media files. Extensions for managing media navigation.
library
v ~ 4\
Metadata N -
{Deployment Node] N Register /
File System

o ——

]
Location of media files.

Audio Streaming Plug-Ins

from Media Server
TContainer]
File System

[Depioyment Node]

Decoding of different types of audio
data,

Core Media Server

from Media Server

[Container
Obtain audio

data stream.

Core Rendering System
from Media Renderer
_ [Container]
Manage and stream media library. Provide “a‘vn'gez‘,‘;"':;:‘:y"“"y"“" of
/ > / [
Load video data .
stream Register

User Interaction Registe
, A
Video Streaming Plug-Ins fUI .lfldug-l‘r‘ls
Trom MediaServer SR
container]
Decoding of different types of video
data.
Media Server

User interface extensions.

Media Renderer

§ Conclusion

Microkernel Pros & Cons

Simplicity Core system & Plug-in interface
Foxtensibility Plug-ins

Interoperability Plug-ins

Scalability

Reliability

“//" ;)' ‘/’ - \‘
&)

&)
N

€.
74

o Qo

o)
&)

e

-

a'a)
o

	Microkernel Architecture
	Technical & Domain Partitioning
	Media Server Example
	Conclusion

