Microservices Architecture

Software Architecture

Richard Thomas

April 15, 2024

General Topology

1Croservices

M

Client 1 Service 1
from Microservices Topology
Contsiner]
e.g. Mobile Interface
X
Client 1 _+ service 1
[Deployment Node] | (Deployment Node]
e
APIs Service 1 API
Ve
\ -
A 4 Z
. AMPI Layfr‘ Service 2
S e — Service 2 API - from Microservices Topology
Interface to external services.
A AN
API Layer | S Service 2
(Deployment Nod] N (Deployment Node]
APIs Service 3 API
‘ N
N
A
Client 2 Service 3
from Microservices Topology
] from Microservices Topology
[Container]
e.g. Web Interface
Client 2 Service 3

[Deployment Node] [Deployment Node]

DB 1 Server
[Deployment Node]

Service 1 DB

from Microservices Topology

[Container]

Service 2 DB

from Microservices Topology

DB 2 Server
[Deployment Node]

[Container]

Service 3 DB

from Microservices Topology
[Container]

DB 3 Server
[Deployment Node]

API Layer Components

Service 1 API) Service 1
[Component] — Service 1 APl [Container]
API1 ¥
Client 1
[Container]
e.g. Mobile Interface
API 2 -
Service 2 APl Service 2
[Component] Service 2 API 9> [Container]
API 2
Client 2
[Container]
e.g. Web Interface
API 3 -2
Service 3 API Service 3

— Service 3 APl >

[Component] [Container]

Service 1 Components

Component 1

{Component] - Service 1 DB
[Container]

v

|

API Layer Service 1 Fagade
[Container] — Service 1 APl {Component]
Interface to external services. -

—~

-

Component 2

[Component]

Client with Monolithic Ul

e — |
| |
Service 1 Ul
I [Component: e.g. React Native]
~+
PiEad APIT __
‘ Client 1 Integrated Ul ‘ b lerer
[Component: e.g. React Native]
™~
o g
-
Service 2 Ul
‘ [Component: e.g. React Native] ‘
Client1

DDD Influence
Services are bounded contexts.
Bounded contexts are not necessarily services.

Definition 1. Bounded Context

Logical boundary of a domain where particular terms
and rules apply consistently.

-— -

- —

/

Sales Context
l ‘ Opportunity

~

’

’-------_--.

Support Context

Customer]

[Customer

~

Product]

-
[Product

Ticket

[Pipeline

Territory
)
.

\ Sales Person

.

~
- -— - -_—

From https://martinfowler.com/bliki/BoundedContext.html

/

Product
Version

-

https://martinfowler.com/bliki/BoundedContext.html

Definition 2. Service Cohesion Principle

Services are cohesive business processes.
They are a bounded context.

Large Bounded Contexts

A bounded context may be too large to be a single
service.

Split it into services that are independent sub-processes.

Definition 3. Service Independence Principle

Services should not depend on the implementation of
other services.

Corollary 1. Low Coupling

There should be minimal coupling between services.

Corollary 2. No Reuse

Avoid dependencies between services.
Do not reuse components between services.

Bounded Domains Implications

¢ Duplication

* Entities specialised for domain
® Requires mapping of entity data between domains

Bounded Domains Implications

¢ Duplication

* Entities specialised for domain
® Requires mapping of entity data between domains

¢ Should everything be duplicated?

Bounded Domains Implications

¢ Duplication
* Entities specialised for domain

® Requires mapping of entity data between domains

¢ Should everything be duplicated?

® What about common services (e.g. logging, ...)?

Bounded Domains Implications

¢ Duplication

* Entities specialised for domain
® Requires mapping of entity data between domains

¢ Should everything be duplicated?

® What about common services (e.g. logging, ...)?

® Heterogeneity

® Services can use different implementation technologies

Service Plane

Service Service
| Domain J ‘ Domain J | Domain J ‘ Domain J | Domain J ‘ Domain J
‘ Domain J | Domain J | Domain J | Domain J ‘ Domain J | Domain J

(]
c
Database ﬂ Database
o
@
=
— [} —
Circuit . Circuit .
, () G | ; (s) Came)
>
b-] 5
& &
G 0 CEplams

From Fundamentals of Software Architecture

Service Mesh

From Fundamentals of Software Architecture

Service Mesh

re Architecture

From Fundamentals of Softwa

Choreography € Orchestration

Choreography Similar to event-driven broker
Orchestration Similar to event-driven mediator

W

Choreogra,phy “Place an order to purchasea
book”
API Layer
Y
Workflow pay_for_order
owner ~— & SO || S —— Inventory
B e update_inventory
OO | | 4
WISSNSNSNRNR | | E———————

Database

From Fundamentals of Software Architecture

\

Sahara using Choreography

Web Applu:atlon

Delivers the web front-end for the
on-line store.

Apache TomEE
(Deployment Node: Apache Tom€E 8]

Web Server
[Deplayment Node]

Purchasing Database
o Choreography Sore
oniainer Wy3QL)

Stores customer credentials,
products and orders.

W) Purchasing DB Server
Deployment Nocd: bySQL 8]

Sahara eCommerce App
Deployment Node

API Layer

from Choraography Store
ntainer]

Send Purchase Find & Retrieve
Product Details
R

API Layer
Deployment Nodel
Send Purchase

Request
i

Product Purchasing

et s
Store Purchase Conaner a1

tails
[

Get Shipping
Provides backend logic for Address

purchasing products.

Product Purchasing Ssrver ~

Deploymen Node: ya 1775 N

Fulfil Order

Process payment.
Rl REST APLISON/HTTPS]

Product Brow:

from Choreography Store

[Container:jave]

Provides backend logic for browsing
or searching for products.

Product Browsing Server
oepioyment ode: a1

Customer Account
Management

rom Choreography Siore
Continer jve]
Provides backend logic for
managing customer accounts.

Customer Account Server
[Deployment Nod: ava 17 LTS

Finds Product

_ Queries & |

Updates
[

Browsing Database
> from Choreography sore
TComaier: ySaL1

Stores data about customer
browsing sessions.

Browsing DB Server

Customer Account
Y Database
from chorscgraprystore
[Container ySaL]
Stores customer credentials and
order history.

W) Customer Account DB Server
[Deplayment Node: WySQL 2]

Fulfilment Database
from Choreography Stora
{Containar: WySaL)

Stores customer credentials,
products and orders.

Fulfilment Database
[Deployment Node: MySQL 8.0]

Product Fulfilment Server
[Deployment Node: Ubunt 20.04 LTS & jova 17 LT5)

ahara
[Deplaymoent Node: Sahars sCommerce Data Certre]

Product Fulfilme!

from Chorcography Store
© 1

4 store Order (Container: ava
gl Provides backend logic for fulfilling
orders.

Payment Gateway

from payment provider
(Container]

Provides ac

ss to service providing
payment faciliies.

Payment Provider Gateway

[Deployment Node]

1Deployment Node: MySQL 501

Web Applcaton
| ot |

& Query Al
Products in Cart >
wa

ing Datal

9: Query for
- Customer
Address
wa
12:y
Cusmmers rder >
Histe
e

15: Store Order
o +-

1
Produc Fuliment | Fulfilmen
concin o

ProductBrowsing

4: Get Products in

o
APl Layer ’

Continer; | v
2: Check Out Cart

8: Get Shipping ~
Address

,,,,,,,,,,,,,,,,,,,,,,,, 7: Get Shipping _

o 11: Get Shipping
Address -

10: Get Shipping

3: Check Out Cart 5 [

Customer Account Management

Product Purchasing N Customs
continer; | 13:Fulfil Order |
EURNG

14: Create Pick
Sheet & Shipping ~ P
Label

O rchest rat ion e ——— el orgs(r)i? purchasea *

/

Database

Workflow
owner T
Frmmm———— PlaceOrder |1l | _ L e —
i, e "
1 | | b==m===
b =)
1
o
¢ ! i
=

Ui

From Fundamentals of Software Architecture

Question
How bad is the coupling with choreography or
orchestration?

Question

How bad is the coupling with choreography or
orchestration?

Answer

For a large system, very bad.

ith Event Queue

1Croservices wi

M

Client 1

from Micrc s Topology

(Container]

e.g. Mobile Interface

Pl
Client 1
[Deployment Node] |

APIs Service 1 API

| -

e
v ~
. AMPI LayTerI Service 2
o omtainen) T — - Service 2 APl — P> from Microservices Topology
Container]
Interface to external services.

A N |
API Layer | N Service 2
[Deployment Node] [Deployment Node] |

i AN

~ | GO
APIs Service 3 API
~
~
Na
Client 2 Service 3
from Microservices Topology
ntainer from Microservices Topology
[Container]
eg. Web Interface

Client 2 Service 3

[Deployment Node]

| service 1
[Deployment Node]

Service 1

from Microservices Topology
[Container]

[Deployment Node)

Service 1 DB

from Microservices Topology.
[Container]

DB 1 Server

[Deployment Node]

— — — — — QueueAPI-

Service 2 DB

from Microservices Topology.
(Container]

DB 2 Server

[Deployment Node]

— — — QueueAPl—- —

Service 3 DB

from Microservices Topology.
[Container]

DB 3 Server

[Deployment Node]

Queue AP —

Message Queue

from Microservices Topology
[Container]

A

Message Queue |
(Deployment Node]

Service 1 Components with Event Queue

API Layer
[Container]

Interface to external services.

— Service 1 AP|

Component 1

[Component]

Service 1 Facade

[Component]

Component 2

[Component]

— Queue APl — P

Service 1 DB

[Container]

Message Queue

[Container]

Sahara using an Event Queue

Inventory Management

ey ansgement e

Inventory Application B
eaac t tga ey, B e ek
i

e arsonnel Computse.
oy o e

Interactive Web Pages
(5 S E
Frovces e ensronment i wnich
mtamers G tew ot

oo pache Tomet

Customers Computer
e o A w5t

Payment Gateway

PoymenerosderGcenay
fichttion

W

Product Fulfilment

Product Details Database femoresers Fulﬂlme::ﬂb:lahase
> sy = s ey
e e el o o
fbskeo N }7 et

P

P Ca
Message Queue DataMmlnglnlerh(e
Queves s o enes === o
Satedty -
\
i
ol [TR
i S v)
P |
r Customer Account ! T
L stomer Account jostabese !
Management R |
~ P————
~ g |
|
s ! s sener
N \ i} |
(@ Gomer s [Browsing Hitory
| . |
e wchose ot |
N) i
| o I "anne
‘ :
) .
v v ¥
Purchasing Database Browsing Database Data Warehouse
N o et

Storescstomer credent,
procs and orders.

Stores ot bt customer

Stores cstamer rowsing and
Drowan sesans oy,

ransacuon

PR,

(B hmmmsresmy

Question

Are browsing and purchasing separate
contexts”

Question

Are browsing and purchasing separate
contexts?

Answer

e Are they a single business process or different
processes”’
® Do they share much or little data?

Question

e What about inventory management and
browse?

® How do they maintain a consistent product
database?

Pros & Cons

Modularity
Extensibility
Reliability
Interoperability
Scalability
Security
Deployability
Testability
Simplicity

