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DDD Influence
Services are bounded contexts.
Bounded contexts are not necessarily services.



Definition 1. Bounded Context

Logical boundary of a domain where particular terms
and rules apply consistently.
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Definition 2. Service Cohesion Principle

Services are cohesive business processes.
They are a bounded context.




Large Bounded Contexts

A bounded context may be too large to be a single
service.

Split it into services that are independent sub-processes.



Definition 3. Service Independence Principle

Services should not depend on the implementation of
other services.




Corollary 1. Low Coupling

There should be minimal coupling between services.




Corollary 2. No Reuse

Avoid dependencies between services.
Do not reuse components between services.
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Bounded Domains Implications

¢ Duplication

* Entities specialised for domain
® Requires mapping of entity data between domains

¢ Should everything be duplicated?

® What about common services (e.g. logging, ...)?

® Heterogeneity

® Services can use different implementation technologies
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Choreography € Orchestration

Choreography Similar to event-driven broker
Orchestration Similar to event-driven mediator
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Question
How bad is the coupling with choreography or
orchestration?



Question

How bad is the coupling with choreography or
orchestration?

Answer

For a large system, very bad.
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Service 1 Components with Event Queue
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Sahara using an Event Queue
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Question

Are browsing and purchasing separate
contexts”



Question

Are browsing and purchasing separate
contexts?

Answer

e Are they a single business process or different
processes”’
® Do they share much or little data?



Question

e What about inventory management and
browse?

® How do they maintain a consistent product
database?



Pros & Cons

Modularity
Extensibility
Reliability
Interoperability
Scalability
Security
Deployability
Testability
Simplicity



