
Microservices Architecture
Software Architecture

Richard Thomas

April 15, 2024



M
ic
ro
se
rv
ic
es

G
en
er
al

T
op

ol
og
y



API Layer Components



Service 1 Components



Client with Monolithic UI



DDD Influence

Services are bounded contexts .
Bounded contexts are not necessarily services .



Definition 1. Bounded Context

Logical boundary of a domain where particular terms

and rules apply consistently.



From https://martinfowler.com/bliki/BoundedContext.html

https://martinfowler.com/bliki/BoundedContext.html


Definition 2. Service Cohesion Principle

Services are cohesive business processes.

They are a bounded context.



Large Bounded Contexts

A bounded context may be too large to be a single

service.

Split it into services that are independent sub-processes.



Definition 3. Service Independence Principle

Services should not depend on the implementation of

other services.



Corollary 1. Low Coupling

There should be minimal coupling between services.



Corollary 2. No Reuse

Avoid dependencies between services.

Do not reuse components between services.



Bounded Domains Implications

• Duplication
• Entities specialised for domain

• Requires mapping of entity data between domains

• Should everything be duplicated?

• What about common services (e.g. logging, ...)?

• Heterogeneity
• Services can use different implementation technologies



Bounded Domains Implications

• Duplication
• Entities specialised for domain

• Requires mapping of entity data between domains

• Should everything be duplicated?

• What about common services (e.g. logging, ...)?

• Heterogeneity
• Services can use different implementation technologies



Bounded Domains Implications

• Duplication
• Entities specialised for domain

• Requires mapping of entity data between domains

• Should everything be duplicated?
• What about common services (e.g. logging, ...)?

• Heterogeneity
• Services can use different implementation technologies



Bounded Domains Implications

• Duplication
• Entities specialised for domain

• Requires mapping of entity data between domains

• Should everything be duplicated?
• What about common services (e.g. logging, ...)?

• Heterogeneity
• Services can use different implementation technologies



Service Plane

From Fundamentals of Software Architecture



Service Mesh

From Fundamentals of Software Architecture



Service Mesh

From Fundamentals of Software Architecture



Choreography & Orchestration

Choreography Similar to event-driven broker

Orchestration Similar to event-driven mediator



Choreography

From Fundamentals of Software Architecture



S
ah

ar
a
u
si
n
g
C
h
or
eo
gr
ap

h
y



Purchase Product Dynamic Diagram



Orchestration

From Fundamentals of Software Architecture



Question

How bad is the coupling with choreography or
orchestration?



Question

How bad is the coupling with choreography or
orchestration?

Answer

For a large system, very bad .



M
ic
ro
se
rv
ic
es

w
it
h
E
ve
n
t
Q
u
eu
e



Service 1 Components with Event Queue



S
ah

ar
a
u
si
n
g
an

E
ve
n
t
Q
u
eu
e



Question

Are browsing and purchasing separate
contexts?



Question

Are browsing and purchasing separate
contexts?

Answer

• Are they a single business process or different
processes?

• Do they share much or little data?



Question

• What about inventory management and
browse?

• How do they maintain a consistent product
database?



Pros & Cons

Modularity

Extensibility

Reliability

Interoperability

Scalability

Security

Deployability

Testability

Simplicity


