Pipeline Architecture

Software Architecture

Brae Webb

February 26, 2024

So far. ..
Layered architectures reduce the impact of
changing a layer

Question

Why does the layer order matter?

Question

Why does the layer order matter?

Answer

Each layer implements a different interface.

So. ..

If every layer implements the same interface?

Ezxtreme layered architecture

Pipeline Architectures!

Lsorta

Definition 1. Pipeline Architecture

Components connected in such a way that the output
of one component is the input of another.

Question

Can you think of a pipeline architecture?

Question

Can you think of a pipeline architecture?

Answer

How about bash?

>> cat assignment.py | grep "hack" | wc -1 | tee code-quality.txt

1 >> cat assignment.py | grep "hack" | wc -1 | tee code-quality.txt

Notice:

¢ Each program performs a small well-defined task.

1 >> cat assignment.py | grep "hack" | wc -1 | tee code-quality.txt

Notice:
¢ Each program performs a small well-defined task.

* Each program implements the same interface (i.e. raw text).

1

>> cat assignment.py | grep "hack" | wc -1 | tee code-quality.txt

cat assignment.py

grep "hack”

we -1

tee code-quality.txt

Filter

Pipe

Filter

Pipe

Filter

Filter

Pipe

Filters

Filter

Pipe

Modular software components

Filter

Filter

Pipe

Filters

Filter

Pipe

Modular software components

Pipes

The flow of data between filters

Filter

Types of Filters

Producers

Source of data

Types of Filters

Producers

Source of data

Transformers

Transform data

Types of Filters

Producers

Source of data

Testers

Filter data

Transformers

Transform data

Types of Filters

Producers Testers
Source of data Filter data
Transformers Consumers

Transform data Target for results

FEzercise

Label the bash pipeline

cat assignment.py

grep "hack”

we -1

tee code-quality.txt

Producer

cat assignment.py

grep ”hack”

we -1

tee code-quality.txt

Producer

cat assignment.py

Tester

grep ”hack”

we -1

tee code-quality.txt

Producer

cat assignment.py

Tester

grep ”hack”

Transformer

we -1

tee code-quality.txt

Producer

cat assignment.py

Tester

grep ”hack”

Transformer

Consumer

we -1

tee code-quality.txt

Definition 2. One Direction Principle

Data should flow in one direction — downstream.

Definition 3. Independent Filter Principle

Filters should not rely on specific upstream or down-
stream components.

Corollary 1. Generic Interface

The interface between filters should be generic.

Corollary 2. Composable Filters

Filters (i.e. Transformers & Testers) can be applied
in any order.

The Case Study

Bash

POSIX-2017
Shell & Utilities

Utilities
admin - create and administer SCCS Files (DEVELOPMENT) ex - text editor
alias - define or display aliases expand - convert tabs to spaces
ar - create and meintain Llibrary archives expr - evaluate arguments as an expression
asa - Lnterpret carriage-control characters false - return false value
at - execute commands at a later time fc - process the command history list
awk - pattern scanning and processing language fg - run jobs in the foreground
basenane - return non-directery pertion of a pathname file - determine file type
batch - schedule commands to be executed in a batch queue find - find files
be - arbitrary-precision arithnetic Language fold - filter for folding lines
bg - run jobs in the background forti7 - FORTRAN compiler (FORTRAN)
€99 - compile standard C programs fuser - list process IDs of all processes that have one or more Files
cal - print a calendar open
cat - concatenate and print files gencat - generate a formatted nessage catalog
cd - change the working directory getconf - get configuration values
cflow - generate a C-language F'Luwraph (DEVELGPHENT) get - get a version of an SCCS file (DEVELOPMENT)
chgrp - change the file group cvmership getopts - parse utility options
chmod - change the file modes m - search a file For a pattern
chown - change the file cwnership = remenber or report utility locations
cksun - write file checksums and sizes head - copy the first part of files
cmp - compare two files icony - codeset conversion
command - execute a simple command id - return user identity
conn - select or reject Lines common to two files ipern - remove an XSI message queue, semaphore set, or shared memory
Compress - compress data segment identifier
cp - copy Files - report XSI Lnterprocess comunication facilities status
crontab - schedule periodic background work jobs - display status of jobs in the current session
esplit - split files based on context join - relational database operator
€tags - create a tags file (DEVELOPMENT, FORTRAN kill - terminate or signal processes
cut - cut out selected fields of each line of a l‘ile lex - generate programs for Lexical tasks (DEVELOPHMENT)
cxref - generate a C-language program cross-reference table link - call link function
(ns\rsmwsm) n - link files
date - write the date and time localedef - define locale enviromment
dd - convert and copy a file locale - get locale-specific information
delta - make a delta (change) to an 50C5 file (DEVELOPMENT) logger - log messages
df - report free disk space logname - return the user's login name
diff - compare two files 1p - send files to a printer
dirname - return the directory portion of a pathname 1s - list directory contents
du - estimate file space usage nd - RAcro processor
echo - write arguments to standard output mallx - process messages
d - edit text make - maintain, update, and regenerate groups of programs
env - set the enviromment for command invocation {DEVELOPHENT)

Question

Who has heard of literate programming?

The Challenge — set by Jon Bently
1. Read a file of text.
2. Determine the n most frequently used words.

5. Print out a sorted list of those words along
with their frequencies.

Knuth’s Solution

17 pages of elegant and descriptive code.

by fon Bentley
with Special Guest Oysters
Don Knuth and Doug Mcllroy

programming
pearis

A LITERATE PROGRAM

Last month's coluom introduced Don Knuth's style of
“Literate Programming” and his WEB system for building
programs that are warks of literature. This column pre-
Sents a literate program by Knuth (is origins are sketched
it last month’s column) and, as befis lterature, @ review.
So without further ado, here is Knuth's program,

retypeset in Communications style. —Jon Bentley
Common Words Section
Introduct T
St consdoraions e 8
BOSIC IPUL TOUINGS ..o Y
Dictionary lookup... ... B 14
Sortinga tre ... 6
The endgame...... e RIS
Index ..)

1. Introduction. The purpose of this progra is to
solve the following problem posed by Jon Bantley:

Given a text file and an integor k, print the k most
common words in the file (and the number of
their occurrences) in decreasing frequency.

Jon intentionally left the problem somowhat
Tigun, bl b st that s et shuld o bl o
find the 100 most frequent words in a twenty-page
{ochnical paper (roughly a SOK byte) without

due emotional trauma.”

Let us agree tha a word is a sequence of one or
‘more contiguous letters; "Bent ey " is a word, but
“ain*t= isnl, The soquence of letters should be

4

vithout ncuding o nonleter, Uppercae etrs
are considored equivalent 1o their low
Countarpats, 50 tht he words *Bonc oy
and *BENTLEY" and *bentley* are essentially
identical

The given problem still isn't well defined. for the
file might contain more than k words, all of the same
i A 0072 07

June 1986 Volume 29 Number 6

froquoncy; or there might not even be as many as k

quency, with words of equal frequency listed in al-
phabetic order. Printing should stop aftar k words
have been output, if more than k words are present.

2. The input file is assumed (0 contain the given

toxt.If it begins with a positive decimal number

(preceded by optional blanks), that number will be

the value of k: othorwiso wo shall asume that

define wun =100 fuse this value if kisn't
othorwise specified]

3. Besides solving the given problem, this program is
supposed to be an example of the WES system, for
people who know some Pascal but who have never
seen WES before. Here is an outline of the program
10 be constructed:

program common.words (nput, utput)

var (Global i 2
(Procaduros for initialization 5)
(Procedures for input and output)
(Procedures for data manipulation 20)
begin (The main program 8);

end.

4. The main idea of the WES approach is to let the
program grow in natural stages, with its parts pro-
sentd in roughly the order hat they migh have
clairvoyant.

For example, each global variable will be intro-
duced when we first know that it is nocossary or
desirable: the WE system will take care of collocting
thes daclratios o th properpsc. We alady

jout one global variable, namely the number
pres Bentley called . Let us give it the more descrip-
tive name max_words_to_print.

Communications of the ACM.

o

programming Pearls

(Global variables
max_words._to_print: integer;

ot moet his many words will e printed]
Sewalsosections 1 22,32, and 36.

“This code Is used in soction 3.

5 s niroduco new globl varisble, il o

consst o various piocos afcodo 6 bo spociied
when we think of particular kinds of initialization.

(Procdures o naliztion 5) =
dize

var i ml«grr ol purpose fndex for nilaliza-
tions|

tial values 12)

“This code is used in secton 3.

6. The WEB system. which may be thought of

rocessor for Pascal. incudos a macro defntion
factty s hat portable prgrams are seste 1 write
For exampl, we have sready defned el X 1o
be 100. Hore are two more examples of WEB macros;
they allow us to writo, e.g, ‘icricount{p]) as a con-
vendantabbrovialion for th tlement ‘o]
Countlpl +

dofine incri#) = # — # + 1 (increment a vari-
able}

define decr(#) = # — # — 1 {decrement a vari-
able}

7. Some of the procedures we shall be w
t0 abrupt conclusions; hence it will be convenient to
introduco a return’ macro for the operation of
jumping to the end of the procedure. A symbolic
Tabel ‘exit” will bo declared in all such procedures,
and exit: will be placed just before the final end.
(No other labels or goto statements are used in tho
present program, but the author would find it pain-
ful to eliminate these particular ones.)

fthe end of a procedure]
define retur = goto exit |quick termination]
format return = ril_|typoset ‘return’ in boldface}

8. Strategic considerations. What algorithms and
data structuros should be used for Bentley's prob-
lem? Clearly we need to be able to recognize differ-
ent occurrences of the same word. s0 some sort of
internal dictionary is necessary. There's no obvious
way (o decido that a particular word of the input
cannot possibly be in the final set, until we've gotien
very near the end of the file: so we might as well
remember every word that appears.

Communications of the ACM

‘There should be a frequency count associated
with each word, and we will eventually want to run
through the words in order of decreasi
But there’s no need to keop these counts in order as
we read through the input, since the order maters
only at the end.

Therefore it makes sense 10 structure our program
as follows:

(The main program 8) =
iniialize;

(Establish the value of i

lnput tho tex. ma i

frequency co

(Sorshe dcionary by Irequoncy 3y

(Output the results 41)
“Thiscode i used in section 3,

words_to_print 10);

9. Basic input routines. _Lets switch to a bottom-
up approach now, by writing some of the procedures.
that we know will be necessary sooner o later.
‘Then we'll have some confidence that our program
is taking shape, even though we haven't decided yet
how to handle the searching or the sorting, It will be
nice to got the messy details of Pascal input out of

off our minc
jon that reads an optional pasitive
returning zero if none is present at the be-
ginning of the current line.

(Procedures for input and output) =
function read_int: integer
var i integer;fthe accumulated value}

nn
if veof then
begin while (~eolr) A (input | = ') do
setinput):
while (input 1 = *0) A (input 1 = '9°) do
begin 1 e 100n -+ ord(input?) — ord('0"):
selimpu):
read_int s
end:

Seo alo sections 15, 35, and 40,

“Thiscode i used in section 3

10. We invoke read_int only once.

(Establish th valu of mex.ords-toprint 0) =
max_iwords_to-print «— read_
if max_words_to_print =

e soords.lo_print o defalt_k

“Thiscode i usd in section 8.

11. To find words in the inpu file, we want a quick
way to distinguish lottors from nonletters. Pascal has

June 1386 Volume 29 Number §

Mcllroy’s Solution

tr -cs A-Za-z '\n' | \
tr A-Z a-z | \
sort | \
uniq -c¢ | \
sort -rn | \
sed ${1}q

Question

[s literate programming bad?

Question

[s literate programming bad?

Answer

No, the Unix philosophy is just good.

Uniz Philosophy
e Write programs that do one thing and do it
well.

Uniz Philosophy
e Write programs that do one thing and do it
well.

e Write programs to work together.

Uniz Philosophy
e Write programs that do one thing and do it
well.

e Write programs to work together.

e Write programs to handle text streams,
because that is a universal interface.

Bash itself is a pipeline

Input

Parsing

Brace Expansion

Variable Expansion

Arithmetic

Tilde Expansion

Word Splitting

Reading...

[Webb and Thomas, 2023

“Pipeline Architecture” Notes:

References

‘Webb and Thomas, 2023] Webb, B. and Thomas, R. (2023).
Pipeline architecture.
https://csse6400.uqcloud.net/handouts/pipeline.pdf.

https://csse6400.uqcloud.net/handouts/pipeline.pdf

