
Pipeline Architecture

Software Architecture

Brae Webb

February 26, 2024

So far. . .

Layered architectures reduce the impact of
changing a layer

Question

Why does the layer order matter?

Question

Why does the layer order matter?

Answer

Each layer implements a different interface.

So. . .

If every layer implements the same interface?

Extreme layered architecture

Pipeline Architectures1

1sorta

Definition 1. Pipeline Architecture

Components connected in such a way that the output

of one component is the input of another.

Question

Can you think of a pipeline architecture?

Question

Can you think of a pipeline architecture?

Answer

How about bash?

 >> cat assignment.py | grep "hack" | wc -l | tee code-quality.txt

 >> cat assignment.py | grep "hack" | wc -l | tee code-quality.txt

Notice:

• Each program performs a small well-defined task.

• Each program implements the same interface (i.e. raw text).

 >> cat assignment.py | grep "hack" | wc -l | tee code-quality.txt

Notice:

• Each program performs a small well-defined task.

• Each program implements the same interface (i.e. raw text).

 >> cat assignment.py | grep "hack" | wc -l | tee code-quality.txt

cat assignment.py grep ”hack” wc -l tee code-quality.txt

Filter Filter Filter
Pipe Pipe

Filter Filter Filter
Pipe Pipe

Filters

Modular software components

Filter Filter Filter
Pipe Pipe

Filters

Modular software components

Pipes

The flow of data between filters

Types of Filters

Producers

Source of data

Types of Filters

Producers

Source of data

Transformers

Transform data

Types of Filters

Producers

Source of data

Transformers

Transform data

Testers

Filter data

Types of Filters

Producers

Source of data

Transformers

Transform data

Testers

Filter data

Consumers

Target for results

Exercise

Label the bash pipeline

cat assignment.py grep ”hack” wc -l tee code-quality.txt

cat assignment.py

Producer

grep ”hack” wc -l tee code-quality.txt

cat assignment.py

Producer

grep ”hack”

Tester

wc -l tee code-quality.txt

cat assignment.py

Producer

grep ”hack”

Tester

wc -l

Transformer

tee code-quality.txt

cat assignment.py

Producer

grep ”hack”

Tester

wc -l

Transformer

tee code-quality.txt

Consumer

Definition 2. One Direction Principle

Data should flow in one direction — downstream.

Definition 3. Independent Filter Principle

Filters should not rely on specific upstream or down-

stream components.

Corollary 1. Generic Interface

The interface between filters should be generic.

Corollary 2. Composable Filters

Filters (i.e. Transformers & Testers) can be applied

in any order.

The Case Study

Bash

Question

Who has heard of literate programming?

The Challenge — set by Jon Bently

1. Read a file of text.

2. Determine the n most frequently used words.

3. Print out a sorted list of those words along
with their frequencies.

Knuth’s Solution

17 pages of elegant and descriptive code.

by jot1 Be~~tley

with Special Guest Oysters

Don Knuth and Doug McIlroy

programming
pearls

A LITERATE PROGRAM

Last month‘s column introduced Don Knuth’s style of
“Literate Programming” and his WEB system for building
programs that are works of literature. This column pre-
sents a literate program by Knuth (its origins are sketched
in last month‘s column) and, as befits literature, a review.
So without further ado, here is Knuth’s program,
retypeset in Communications style. -Jon Bentley

Common Words Section
Introduction.. , , , , . , , , . . 1
Strategic considerations . , a
Basic input routines , , . 9
Dictionary lookup . , , , .17
The frequency counts .32
Sortingatrie ...36
Theendgame................................41
Index ...42

1. Introduction. The purpose of this program is to
solve the following problem posed by Jon Bentley:

Given a text file and an integer k, print the k most
common words in the file (and the number of
their occurrences) in decreasing frequency.

Jon intentionally left the problem somewhat
vague, but he stated that “a user should be able to
find the 100 most frequent words in a twenty-page
technical paper (roughly a 50K byte file) without
undue emotional trauma.”

Let us agree that a word is a sequence of one or
more contiguous letters; “Bentley” is a word, but
“ain 1 t II isn’t. The sequence of letters should be
maximal, in the sense that it cannot be lengthened
without including a nonletter. Uppercase letters
are considered equivalent to their lowercase
counterparts, so that the words “Bentley”
and “BENTLEY” and “bentley” are essentially
identical.

The given problem still isn’t well defined, for the
file might contain more than k words, all of the same
01966 ACM OOOl-0782/86/0600-0471 750

frequency; or there might not even be as many as k
words. Let’s be more precise: The most common
words are to be printed in order of decreasing fre-
quency, with words of equal frequency listed in al-
phabetic order. Printing should stop after k words
have been output, if more than k words are present.

2. The input file is assumed to contain the given
text. If it begins with a positive decimal number
(preceded by optional blanks), that number will be
the value of k; otherwise we shall assume that
k = 100. Answers will be sent to the output file.

define default-k = 100 (use this value if k isn’t
otherwise specified)

3. Besides solving the given problem, this program is
supposed to be an example of the WEB system, for
people who know some Pascal but who have never
seen WEB before. Here is an outline of the program
to be constructed:

program common-words (input, output);
type (Type declarations 17)

var (Global variables 4)
(Procedures for initialization 5)
(Procedures for input and output a)
(Procedures for data manipulation 20)
begin (The main program 8);

end.

4. The main idea of the WEB approach is to let the
program grow in natural stages, with its parts pre-
sented in roughly the order that they might have
been written by a programmer who isn’t especially
clairvoyant.

For example, each global variable will be intro-
duced when we first know that it is necessary or
desirable; the WEB system will take care of collecting
these declarations into the proper place. We already
know about one global variable, namely the number
that Bentley called k. Let us give it the more descrip-
tive name max-words-to-print.

June 1986 Volume 29 Number 6 Communications of the ACM 471

Programming Pear/s

(Global variables 4) =

max.-words-to-print: integer;
(at most this many words will be printed)

See also sections 11, 13, 18, 22, 32, and 36.
This code is used in section 3.

5. As we introduce new global variables, we’ll often
want to give them certain starting values, This will
be done by the initialize procedure, whose body will
consist of various pieces of code to be specified
when we think of particular kinds of initialization,

(Procedures for initialization 5) =
procedure initialize;

var i: integer; {all-purpose index for initializa-
tions)

begin (Set initial values 12)
end;

This code is used in section 3.

6. The WEB system, which may be thought of as a
preprocessor for Pascal, includes a macro definition
facibty so that portable programs are easier to write.
For example, we have already defined ‘default-k’ to
be 100. Here are two more examples of WEB macros;
they allow us to write, e.g., ‘incr(counf[p])’ as a con-
venient abbreviation for the statement ‘counf[p] +
counf[p] + 1’.

define incr(#) = # c- # + 1 (increment a vari-
able}

define deer(#) = 4# t # - 1 {decrement a vari-
able)

7. Some of the procedures we shall be writing come
to abrupt conclusions; hence it will be convenient to
introduce a ‘return’ macro for the operation of
jumping to the end of the procedure. A symbolic
label ‘exit’ will be declared in all such procedures,
and ‘exit:’ will be placed just before the final end.
(No other labels or goto statements are used in the
present program, but the author would find it pain-
ful to eliminate these particular ones.)

define exit = 30 (the end of a procedure}
define return = goto exit {quick termination]
format return = nil {typeset ‘return’ in boldface)

8. Strategic considerations. What algorithms and
data structures should be used for Bentley’s prob-
lem? Clearly we need to be able to recognize differ-
ent occurrences of the same word, so some sort of
internal dictionary is necessary. There’s no obvious
way to decide that a particular word of the input
cannot possibly be in the final set, until we’ve gotten
very near the end of the file; so we might as well
remember every word that appears.

There should be a frequency count associated
with each word, and we will eventually want to run
through the words in order of decreasing frequency.
But there’s no need to keep these counts in order as
we read through the input, since the order matters
only at the end.

Therefore it makes sense to structure our program
as follows:

(The main program a) =
initialize;
(Establish the value of max-words-to-print IO);

(Input the text, maintaining a dictionary with
frequency counts 34);

(Sort the dictionary by frequency 39);
(Output the results 41)

This code is used in section 3.

9. Basic input routines. Let’s switch to a bottom-
up approach now, by writing some of the procedures
that we know will be necessary sooner or later.
Then we’ll have some confidence that our program
is taking shape, even though we haven’t decided yet
how to handle the searching or the sorting. It will be
nice to get the messy details of Pascal input out of
the way and off our minds.

Here’s a function that reads an optional positive
integer, returning zero if none is present at the be-
ginning of the current line.

(Procedures for input and output 9) =
function read-inf: integer;

var n: integer; {th e accumulated value)
begin n c 0;
if leaf then

begin while (leoln) A (input t = Iu’) do
gef(inpuf];

while (input 1 2 ‘0’) A (input 1 5 ‘9’) do
begin n t lO*n + ord(inpuf7) - ord(‘0’);
gef(inpuf);
end;

end;
read-inf c n;
end;

See also sections 15, 35, and 40.
This code is used in section 3.

10. We invoke readht only once.

(Establish the value of max-words-to-print IO) =
max-words-to-print c read-inf;
if max-words-to-prinf = 0 then

max-words-to-print t default-k

This code is used in section 8.

11. To find words in the input file, we want a quick
way to distinguish letters from nonletters. Pascal has

472 Communications of he ACM June 1986 Volume 29 Number 6

McIlroy’s Solution

 tr -cs A-Za-z '\n' | \

 tr A-Z a-z | \

 sort | \

 uniq -c | \

 sort -rn | \

 sed ${1}q

Question

Is literate programming bad?

Question

Is literate programming bad?

Answer

No, the Unix philosophy is just good.

Unix Philosophy

• Write programs that do one thing and do it
well.

• Write programs to work together.

• Write programs to handle text streams,
because that is a universal interface.

Unix Philosophy

• Write programs that do one thing and do it
well.

• Write programs to work together.

• Write programs to handle text streams,
because that is a universal interface.

Unix Philosophy

• Write programs that do one thing and do it
well.

• Write programs to work together.

• Write programs to handle text streams,
because that is a universal interface.

Bash itself is a pipeline

Input Parsing Brace Expansion Tilde Expansion

Variable Expansion Arithmetic Word Splitting . . .

Reading...

“Pipeline Architecture” Notes [Webb and Thomas, 2023]

References

[Webb and Thomas, 2023] Webb, B. and Thomas, R. (2023).
Pipeline architecture.
https://csse6400.uqcloud.net/handouts/pipeline.pdf.

https://csse6400.uqcloud.net/handouts/pipeline.pdf

