THE UNIVERSITY
E@ OF QUEENSLAND CREATE CHANGE

CSSE6400: Software Architecture

Security Principles
Dr Guangdong Bai

LA L | .
SSSEUDT PO UBSEP §1085UCD

el e

Foep————

OF QUEENSLAND

>~
=
7
=3
a2}
&
Z
o]
m
an
=

aj0oy

Lasnaj

Illlll-lll SRMYOS JE)

L3150 22N

‘esBgapoa (g uBIge

WB1SAS 0GOS SanIN KUty S1
Apoqaoey

Z10Z QIPTIS [ENSIA OSSN
I SMOPUIAL

35p163 Uoipe S i
2107 390 YosoIiy

X EmopuLy

LEmopuly,

umquits

Smpy 03 sawp YososIy

000 smopuig,

100% 990 0501

L9331 04
29100 usdg syaedy

rgxnun

181 Bupog

TSN

2a03 oyjizop

Plospuy

O'F LN Sopuigy
==- - SHooqAANY AU
I 110A £434D
, xogauld

L]

LN swopuin

L8y Buisog
YOI IO PO
awoayy oo
097G [Puaa xnun|

NoFarwyyeaH eda) 01 papas

X0g X uo J2held QAQ aH

- 950 doyso1044
TS Smopuim
£ surdua [eaiun

- sdossaga | 20uds 3|

25Eqap0s iR tEsEny
0Ty mur]
- 1elazydy sordey Z2-4
_ [P SBWID WSID
suyuo ssaidwg jo 98y
ouapeg

ZauBughLy

2p02 Jo saup uoyu

auBus g axyent

|- ouE)

dg

Increasing complexity of modern software

N o cousooyy
B orweond
B ddesuoyy sdeieas
-

ST IS /7

olaxun

ddv awed auoy)

Heartbleed (2014)

Shellshock (2014)

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Nobody can keep online records safe (2017)

Pravious Close 96.66 Market Cap 11.192B iD 50 1M B6M YTD 1Y 5Y Max wM ™ Full screen

Sep 7,17 160.00
Cpen 94.40 Beta 1.06

142 845
Bid 000x0 PE Ratio (TTM}) 19.69 133.333
Ask 0.00x0 EPS(TTM) 4.72
Day's Range 90.72-95.69 Eamings Date Dgi:fgbzga:?

52 Week Range 89.59 -147.02 Dividend & Yield 1.56 (1.58%)

Volume 16,707,681 Ex-Dividend Date 2017-08-23

Aug 17 Aug 28 Sep 3

Avg. Volume 1,787,251 1y Target Est 136.92

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Best practices are not followed — Password leakage
Taobao @

In approximately 2012, it's alleged that the Chinese shopping site known as Taobao suffered a data breach that
impacted over 21 million subscribers. Whilst there is evidence that the data is legitimate, due to the difficulty of

emphatically verifying the Chinese breach it has been flagged as "unverified". The data in the breach contains
email addresses and plain text passwords. Read more about Chinese data breaches in Have | been pwned.

Yahoo

In July 2012, Yahoo! had their online publishing service "Voices" compromised via a SOL injection attack. The
breach resulted in the disclosure of nearly half a million usernames and passwords stored in plain text. The
breach showed that of the compromised accounts, a staggering 59% of people who also had accounts in the
Sony breach reused their passwords across both services.

Pokémon Creed

z In August 2014, the Pokémon RPG website Pokémon Creed was hacked after a dispute with rival site, Pokémon
Dusk. In a post on Facebook, "Cruz Dusk" announced the hack then pasted the dumped My5QL database on
pkmndusk.in. The breached data included over 116k usernames, email addresses and plain text passwords.

Find more: https://haveibeenpwned.com/

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Why do these happen?

Almost all security failures are caused by software vulnerabllities

Are they inevitable? Or Can we:
 measure risk associated with software?
« design or verify to prevent them?

« program better to avoid vulnerabilities?
« find vulnerabilities (before attacks)?

Consideration in CSSE6400: security-aware software design

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Recommend Reading Materials

Microsoft

‘ BEST PRACTICES

'WRITING

SECURE

secure (softwa re

] \’éqmre;headlng at Mlcrosoft,

/

- Bill Gates

Writing Secure Code, by Michael Howard

and David LeBlanc, Microsoft Press, 2002.

Building Security In provides information on security principles

OWASP: security issues for web applications (more recently also
mobile applications)

CERT Secure Coding: secure coding guidelines for C, C++, Java,
Android apps, etc.

Vulnerability tracking

* BugTraq

 CVE (Common Vulnerabilities and Exposures)

 Individual Companies, e.g., Samsung, Android Security Bulletins

https://buildsecurityin.us-cert.gov/portal/
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
http://www.securityfocus.com/vulnerabilities
http://cve.mitre.org/
http://security.samsungmobile.com/smrupdate.html
https://source.android.com/security/bulletin/

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Software and Security

« Primary goal of software: achieving desired behavior
* E.g., on-line exam invigilation

WE WwANT TO IMPLANT
) THIS RFID TAG IN You
AND IT'S aAL50 Ao CELLPHONE,
DIGITAL CAMERA, AND
MP3 PLAVYER.

wE WANT TO \MPLANT THIS
. . . . RFID Tae IN YOu
Software provides functionality and services
. THAT VIOLATES
&

Security is about regulating access to assets

« E.g., information or functionality
« A secondary concern?

Functionality comes with certain risks

« E.g., what are risks of on-line exam invigilation?
o Privacy, installing backdoor, ...

Software security is about managing these risks

* Preventing undesired behavior

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

Undesired behavior
Stealing information

- Corporate secrets Lol

 Personal information

Modifying information or functionality

« Installing unwanted software (spyware, bot)
» Destroying records (accounts, logs)

Denying access

* Unable to access banking information o
 Unable to use the website Ll

10

Designing Software with Core Security Concepts

Confidentiality Design
Integrity Design
Availability Design

11

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Confidentiality Design

Disclosure protection can be achieved in several ways using cryptographic
and masking techniques.

« Masking is useful for disclosure protection when data is displayed on the
screen or on printed forms

arina@paypal.se arina@paypal.se

Losenor d

VISA LOSENCRD DOLJ LOSENOF
Logga in Logga in

- Cryptographic techniques are useful for assurance of confidentiality when
the data Is transmitted or stored in transactional data stores or offline archives

12

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Symmetric Algorithms

Symmetric algorithms are characterized by using a single key for encryption and decryption
operations that is shared between the sender and the receiver

* E.g., DES, 3DES, Blowfish, AES ?

Secret Same Key
Key

Secret
Key

_S A4S$h*L@9. —L 5
—— T6=#/>B#1 DECI’thiDn [
— ‘ M R06/J2.>1L ﬁ —
ek 1PRL39P20 ek

Plain Text Cipher Text Plain Text

13

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Asymmetric Algorithms

Two keys that are mathematically related to each other are used
 Private key: the key to be held secret

« Public key: disclosed to anyone with whom secure communications and transactions need to
occur.

* It should be computationally infeasible to derive the private key from the public key.

1Y

Public Different Keys Secret
Key Key

q A4Sh*L@9. q
c— M T6=#/>B#1 DECI’thiOH ——
e RO6/J2.>1L o=
=sedl= S 1PRL39P20 DL

Plain Text Cipher Text Plain Text

14

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Integrity Design

Integrity of software and data can be accomplished using any one of the
following techniques or a combination of the techniques

« Hashing (or hash functions)
« Resource locking

15

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

H aS h I n g (H aS h F u n Ctl O n S) 1.Step1: Useri sends a file to Userz alongside its checksum

ﬁ — | thefile
= 5 8

Hash functions are used to condense variable @
length inputs into an irreversible, collision free,
fixed-sized output known as a message digest

".:‘L
"%;ig:ge the hash

2.Userz receives the file and uses the same hashing algorithm

or hash value. Ahashof _ Hashing _
+ MD5, SHA-1, SHA256 = (E)
HaShlng can aISO be used for Confldentla“ty 3.User z compares both hashes. If they are the same, the
deS|gn fileisthesame as well
*
* E.g., password storage on Web server I ﬂ@
i T ¢
Hash of Hash of
the sentfile thereceived file

16

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Prebullt dictionary attacks

A dictionary attack is an attempt to thwart security protection mechanisms by
using an exhaustive list (like a list of words from a dictionary)

MDS5 Hash
Function

~
John q

8 - | tiger123 | ———=ep | 68FAC1CEE85FFE11629781E545400C65

MDS Hash
Function

Jessie qﬁb

& - | tiger123 | ——==»- | 68FAC1CEE85FFE11629781E545400C65

17

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Salted hash

MD5 Hash
Function

John

8 s ‘ tiger123 | el ‘ 6FE66B73F3772AB40B183DBBD0SCD1D1

MD5 Hash
Function

Jessie %

- ‘ tiger123 | - ‘ 50DC86280CE4269C858EBAI9FAF256D6

Design considerations should take into account the security aspects related to the generation of the salt,
which should be unique to each user and random

18

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Resource locking

Two concurrent operations are not allowed on the same object
« E.g., say arecord in the database

A online banking app with web client and mobile client

19

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Avallability Design

Replication, Failover and Scalability techniques can also be used to design the software for
availability

Replication

« A single point of failure is characterized by having no redundancy capabilities and this can
undesirably affect end-users when a failure occurs

« By replicating data, databases and software across multiple computer systems, a degree of
redundancy is made possible

« Replication usually follows a master-slave or primary-secondary backup scheme

20

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Avallablility Design cont.

Failover

 Failover refers to the automatic switching from an active transactional software, server,
system, hardware component or network to a standby (or redundant) system.

Scalability Technigques

 Vertical scaling means that additional resources are added to the existing node
o Memory, storage, etc.

« Horizontal scaling means that newer nodes are added to the existing node

21

Secure Software Design Principles

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Secure Software Design Principles

Principle #1: Favor simplicity
« Secure by default
» Do not expect expert users

Principle #2: Trust with reluctance
 Employ a small trusted computing base
» Grant the least privilege possible

o Input validation

o Flow Restriction

o Compartmentalize

Principle #3: Defend in depth
« Use community resources
» No security by obscurity

Principle #4: Monitor and trace

23

Simplicity

There are two ways of constructing a
software design; one way is to make it
so simple that there are obviously no
deficiencies, and the other way is to
make it so complicated that there are
no obvious deficiencies. The first
method is far more difficult.

— [ony Heare —

AZ QUOTES

THE UNIVERSITY
OF QUEENSLAND

AUSTRALIA

24

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Principle #1: Favor Simplicity

Keep it so simple it is obviously correct
« Applies to the external interface, the internal design, and the implementation

“We've seen security bugs in almost everything: operating systems,
applications programs, network hardware and software, and security products
themselves. This is a direct result of the complexity of these systems. The
more complex a system is--the more options it has, the more functionality it has,
the more interfaces it has, the more interactions it has--the harder it is to analyze
[its security]” -- Bruce Schneider

25

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Secure by default

Some configuration or usage choices affect a system’s security
« The length of cryptographic keys

* The choice of a password

« Which inputs are deemed valid

The default choice should be a secure one
« Default key length is secure (e.g. 2048-bit for RSA)
* No default password: cannot run the system without picking a strong password
« Whitelist valid objects, rather than blacklist invalid ones
o E.g., don’t render images from unknown sources

26

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

Hacker Breached HealthCare.gov Insurance Site

The Hacker Uploaded Malicious Software, But Consumers' Personal Data Didn't Appear to Be Taken

Washington officials said they are concerned an intruder gained access to the
HealthCare.gov network through a basic security flaw. The server had low security
settings because it was never meant to be connected to the Internet, the HHS official said.

When the hacker broke in, it was only guarded by a default password, which often is easy
to crack.

"There was a door left open,” the official said.

27

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Do not expect expert users

Software designers should consider how the mindset and abilities of (the least sophisticated) users will
affect security
Favor simple user interfaces
« Natural or obvious choice is the secure choice
o Or avoid choices at all, if possible
 Don’t have users make frequent security decisions
o Want to avoid user fatigue. How often should you remind them to change their password?

USER FRIENDLY by J.D. "llliad™ Frazer

Ekkkkkkkkhkkbkkkkhhkik

FPlease create a password. e e e e e de e e e e e ok

Password strength: Adequate
Thank you for creating your
password. You will bec asked

ok FPassword strength: Mediocre

Flease try again.
Password strength: Weak

: TAP TAP ThP THP to change it tomorrow.
Please try again. TAP TAP TAP TAP
TAP TAP TAP TAP TAP SHIFT TAP TAP TAP TAP SHIFT TAP TRP SHIFT TAP SHIFT
TAP TAP TAP TAP TAP SHIFT TRFP TRP TRP TAP
SHIFT TAP SHIFT TAP TAP TAF TAP
ThP ThP
[TAP TAP SHIFT TRP

28

COPTREGHT 2007 LD, “Nlliad™ Framer HTTR: /WAW, ERIRIRTENDLY.ORG

™

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Principle #2: Trust with Reluctance

Whole system security depends on the secure operation of its parts

Improve security by reducing the need to trust

« Reducing the parts / people needed to be trusted
« Not making unnecessary assumptions
o If you use 3" party code, how do you know what it does?

o If you are not a crypto expert, why do you think you can design/implement your own crypto
algorithm?

29

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Trusted Computing Base

Keep the trusted computing base small and simple to reduce overall susceptibility to
compromise

« The trust computing base comprises the system components that must work correctly to
ensure security

Eg. OS Kernels

« Kernels enforce security policies, but are often millions of lines of code
o Compromise in a device driver compromises security overall

« Better: Minimize size of kernel to reduce trusted components
o Micro-kernel designs move device drivers outside kernel

30

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Least Privilege

Don’t give a part of the system more privileges than it needs to do its job (“need to know
basis”)

E.g. Mail program delegates to editor for authoring mails — vi, emacs

« Many editors permit escaping to a command shell to run arbitrary programs: too much
privilege!
« Better design: use a restricted editor (pico)

31

Trust I1s Transitive

If you trust something, you trust what it trusts
 This trust can be misplaced

Previous email client example

« Mailer delegates to an arbitrary editor

« The editor permits running arbitrary code

« Hence the mailer permits running arbitrary code

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

32

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Input validation

Input validation is a kind of trust with reluctance
* You are trusting a subsystem only under certain circumstances
o Validate that those circumstances hold

Examples
« Trust a given function if the range of its parameters is limited (within the length of a buffer)
« Trust a client form field if it contains no <script> tags (and other code-interpretable strings)

33

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Flow Restriction

A good overall system goal is to restrict flow of sensitive data as much as possible

E.g. Admission system at UQ receives student application as PDF files

 Atypical design would allow university administrators to download these files for viewing on
their local computers

o But then compromise of these computers leaks private information
o Better: PDFs only viewable in browser; no data downloaded to client machine

34

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Compartmentalization

|solate a system component in a compartment or sandbox, reducing its privilege by making
certain interactions impossible

» Browser extensions run in a sandbox on the browser

* |solate Flash Player

35

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

Example: Isolate Flash Player

Receive .swf code, save it

Call fork to create a new process

In the new process, open the file

Call exec to run Flash player

Call seccomp-bpf to compartmentalize

36

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Principle #3: Defense in Depth

Security by diversity
« If one layer is broken, there is another of a materially different character that needs to be
bypassed

E.gQ.

« Use a firewall for preventing access via non-web ports
* Encrypt account data at rest

« Multi-factor authentication

37

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Use community resources

User hardened code, perhaps from other projects

* Crypto libraries
« But make sure it meets your needs (test it)

Vet designs publically
« No security by obscurity

38

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Stay up on recent threats and research

NIST for standards
OWASP, CERT, Bugtraq for vulnerability reports

SANS news bites for latest top threats
Academic and industry conferences and journals for longer term trends, technology and risks

39

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Principle #4: Monitoring and Traceabillity

If you are attacked, how will you know it?
« Once you learn, how will you discern the cause?

Software must be designed to log relevant operational information

« What to log? E.g. events handled, packets processed, requests satisfied
« Log aggregation: Correlate activities of multiple applications when diagnosing a breach

40

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Top 10 Design Flaws: Do not ...

Assume trust, rather than explicitly give it or award it.
Use an authentication mechanism that can be bypassed or tampered with.
Authorize without considering sufficient context.

Confuse data and control instructions, and process control instructions from
untrusted sources.

Fail to validate data explicitly and comprehensively.

Fail to use cryptography correctly.

Fail to identify sensitive data and how to handle it.

Ignore the users.

Integrate external components without considering their attack surface.
10. Rigidly constrain future changes to objects and actors.

N e

© 0 NS O

41

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Failure: Bad (or wrong) Crypto

Don’t roll your own crypto
« Both design and implementation are hard to get right

Don’t assume it gives you something it doesn’t, mostly

« Encryption algorithms may protect confidentiality but not integrity
« Hashing protects integrity but not confidentiality

Know how to use it properly

« Use properly generated keys of sufficient size
* Protect the keys from compromise
o Don’t hard-code them, or embed them in released binary

42

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Security Principals

Design with Core Security Concepts

 CIA
« Authentication, Authorization and Accountability

Security Design Principles

* Principle #1: Favor simplicity

* Principle #2: Trust with reluctance
* Principle #3: Defend in depth

* Principle #4: Monitor and trace

43

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

44

