
CSSE6400: Software Architecture

Security Principles
Dr Guangdong Bai

Increasing complexity of modern software

2

Heartbleed (2014)

3

Shellshock (2014)

4

Nobody can keep online records safe (2017)

5

Best practices are not followed – Password leakage

Find more: https://haveibeenpwned.com/

6

Almost all security failures are caused by software vulnerabilities

Are they inevitable? Or Can we:

• measure risk associated with software?

• design or verify to prevent them?

• program better to avoid vulnerabilities?

• find vulnerabilities (before attacks)?

• …

Consideration in CSSE6400: security-aware software design

Why do these happen?

7

Recommend Reading Materials

Building Security In provides information on security principles

OWASP: security issues for web applications (more recently also

mobile applications)

CERT Secure Coding: secure coding guidelines for C, C++, Java,

Android apps, etc.

Vulnerability tracking

• BugTraq

• CVE (Common Vulnerabilities and Exposures)

• Individual Companies, e.g., Samsung, Android Security Bulletins
Writing Secure Code, by Michael Howard
and David LeBlanc, Microsoft Press, 2002.

8

https://buildsecurityin.us-cert.gov/portal/
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
http://www.securityfocus.com/vulnerabilities
http://cve.mitre.org/
http://security.samsungmobile.com/smrupdate.html
https://source.android.com/security/bulletin/

Software provides functionality and services

• Primary goal of software: achieving desired behavior

• E.g., on-line exam invigilation

Security is about regulating access to assets

• E.g., information or functionality

• A secondary concern?

Functionality comes with certain risks

• E.g., what are risks of on-line exam invigilation?

o Privacy, installing backdoor, …

Software security is about managing these risks

• Preventing undesired behavior

Software and Security

9

Undesired behavior
Stealing information

• Corporate secrets

• Personal information

Modifying information or functionality

• Installing unwanted software (spyware, bot)

• Destroying records (accounts, logs)

Denying access

• Unable to access banking information

• Unable to use the website

Confidentiality

Integrity

Availability

10

Designing Software with Core Security Concepts

Confidentiality Design

Integrity Design

Availability Design

11

Confidentiality Design

Disclosure protection can be achieved in several ways using cryptographic

and masking techniques.

• Masking is useful for disclosure protection when data is displayed on the
screen or on printed forms

• Cryptographic techniques are useful for assurance of confidentiality when
the data is transmitted or stored in transactional data stores or offline archives

12

Symmetric Algorithms

Symmetric algorithms are characterized by using a single key for encryption and decryption

operations that is shared between the sender and the receiver

• E.g., DES, 3DES, Blowfish, AES

13

Asymmetric Algorithms

Two keys that are mathematically related to each other are used

• Private key: the key to be held secret

• Public key: disclosed to anyone with whom secure communications and transactions need to
occur.

• It should be computationally infeasible to derive the private key from the public key.

14

Integrity Design

Integrity of software and data can be accomplished using any one of the

following techniques or a combination of the techniques

• Hashing (or hash functions)

• Resource locking

15

Hashing (Hash Functions)

Hash functions are used to condense variable

length inputs into an irreversible, collision free,

fixed-sized output known as a message digest

or hash value.

• MD5, SHA-1, SHA256

Hashing can also be used for confidentiality

design

• E.g., password storage on Web server

16

Prebuilt dictionary attacks

A dictionary attack is an attempt to thwart security protection mechanisms by

using an exhaustive list (like a list of words from a dictionary)

17

Salted hash

Design considerations should take into account the security aspects related to the generation of the salt,

which should be unique to each user and random

18

Resource locking

Two concurrent operations are not allowed on the same object

• E.g., say a record in the database

A online banking app with web client and mobile client

19

Availability Design

Replication, Failover and Scalability techniques can also be used to design the software for

availability

Replication

• A single point of failure is characterized by having no redundancy capabilities and this can
undesirably affect end-users when a failure occurs

• By replicating data, databases and software across multiple computer systems, a degree of
redundancy is made possible

• Replication usually follows a master-slave or primary-secondary backup scheme

20

Availability Design cont.

Failover

• Failover refers to the automatic switching from an active transactional software, server,
system, hardware component or network to a standby (or redundant) system.

Scalability Techniques

• Vertical scaling means that additional resources are added to the existing node

o Memory, storage, etc.

• Horizontal scaling means that newer nodes are added to the existing node

21

Secure Software Design Principles

22

Secure Software Design Principles
Principle #1: Favor simplicity
• Secure by default
• Do not expect expert users

Principle #2: Trust with reluctance
• Employ a small trusted computing base
• Grant the least privilege possible
o Input validation
o Flow Restriction
o Compartmentalize

Principle #3: Defend in depth
• Use community resources
• No security by obscurity

Principle #4: Monitor and trace

23

Simplicity

24

Principle #1: Favor Simplicity

Keep it so simple it is obviously correct

• Applies to the external interface, the internal design, and the implementation

“We've seen security bugs in almost everything: operating systems,

applications programs, network hardware and software, and security products

themselves. This is a direct result of the complexity of these systems. The

more complex a system is--the more options it has, the more functionality it has,

the more interfaces it has, the more interactions it has--the harder it is to analyze
[its security]” -- Bruce Schneider

25

Secure by default

Some configuration or usage choices affect a system’s security

• The length of cryptographic keys

• The choice of a password

• Which inputs are deemed valid

The default choice should be a secure one

• Default key length is secure (e.g. 2048-bit for RSA)

• No default password: cannot run the system without picking a strong password

• Whitelist valid objects, rather than blacklist invalid ones

o E.g., don’t render images from unknown sources

26

27

Do not expect expert users
Software designers should consider how the mindset and abilities of (the least sophisticated) users will

affect security

Favor simple user interfaces

• Natural or obvious choice is the secure choice

o Or avoid choices at all, if possible

• Don’t have users make frequent security decisions

o Want to avoid user fatigue. How often should you remind them to change their password?

28

Principle #2: Trust with Reluctance

Whole system security depends on the secure operation of its parts

Improve security by reducing the need to trust

• Reducing the parts / people needed to be trusted

• Not making unnecessary assumptions

o If you use 3rd party code, how do you know what it does?

o If you are not a crypto expert, why do you think you can design/implement your own crypto
algorithm?

29

Trusted Computing Base

Keep the trusted computing base small and simple to reduce overall susceptibility to

compromise

• The trust computing base comprises the system components that must work correctly to
ensure security

Eg. OS Kernels

• Kernels enforce security policies, but are often millions of lines of code

o Compromise in a device driver compromises security overall

• Better: Minimize size of kernel to reduce trusted components

o Micro-kernel designs move device drivers outside kernel

30

Least Privilege

Don’t give a part of the system more privileges than it needs to do its job (“need to know

basis”)

E.g. Mail program delegates to editor for authoring mails – vi, emacs

• Many editors permit escaping to a command shell to run arbitrary programs: too much
privilege!

• Better design: use a restricted editor (pico)

31

Trust is Transitive

If you trust something, you trust what it trusts

• This trust can be misplaced

Previous email client example

• Mailer delegates to an arbitrary editor

• The editor permits running arbitrary code

• Hence the mailer permits running arbitrary code

32

Input validation

Input validation is a kind of trust with reluctance

• You are trusting a subsystem only under certain circumstances

o Validate that those circumstances hold

Examples

• Trust a given function if the range of its parameters is limited (within the length of a buffer)

• Trust a client form field if it contains no <script> tags (and other code-interpretable strings)

33

Flow Restriction

A good overall system goal is to restrict flow of sensitive data as much as possible

E.g. Admission system at UQ receives student application as PDF files

• A typical design would allow university administrators to download these files for viewing on
their local computers

o But then compromise of these computers leaks private information

o Better: PDFs only viewable in browser; no data downloaded to client machine

34

Compartmentalization

Isolate a system component in a compartment or sandbox, reducing its privilege by making

certain interactions impossible

• Browser extensions run in a sandbox on the browser

• Isolate Flash Player

35

Example: Isolate Flash Player

Receive .swf code, save it

Call fork to create a new process

In the new process, open the file

Call exec to run Flash player

Call seccomp-bpf to compartmentalize

open

36

Principle #3: Defense in Depth

Security by diversity

• If one layer is broken, there is another of a materially different character that needs to be
bypassed

E.g.

• Use a firewall for preventing access via non-web ports

• Encrypt account data at rest

• Multi-factor authentication

37

Use community resources

User hardened code, perhaps from other projects

• Crypto libraries

• But make sure it meets your needs (test it)

Vet designs publically

• No security by obscurity

38

Stay up on recent threats and research

NIST for standards

OWASP, CERT, Bugtraq for vulnerability reports

SANS news bites for latest top threats

Academic and industry conferences and journals for longer term trends, technology and risks

39

Principle #4: Monitoring and Traceability

If you are attacked, how will you know it?

• Once you learn, how will you discern the cause?

Software must be designed to log relevant operational information

• What to log? E.g. events handled, packets processed, requests satisfied

• Log aggregation: Correlate activities of multiple applications when diagnosing a breach

40

Top 10 Design Flaws: Do not …

1. Assume trust, rather than explicitly give it or award it.

2. Use an authentication mechanism that can be bypassed or tampered with.

3. Authorize without considering sufficient context.

4. Confuse data and control instructions, and process control instructions from

untrusted sources.

5. Fail to validate data explicitly and comprehensively.

6. Fail to use cryptography correctly.

7. Fail to identify sensitive data and how to handle it.

8. Ignore the users.

9. Integrate external components without considering their attack surface.

10. Rigidly constrain future changes to objects and actors.

41

Failure: Bad (or wrong) Crypto

Don’t roll your own crypto

• Both design and implementation are hard to get right

Don’t assume it gives you something it doesn’t, mostly

• Encryption algorithms may protect confidentiality but not integrity

• Hashing protects integrity but not confidentiality

Know how to use it properly

• Use properly generated keys of sufficient size

• Protect the keys from compromise

o Don’t hard-code them, or embed them in released binary

42

Security Principals

Design with Core Security Concepts

• CIA

• Authentication, Authorization and Accountability

Security Design Principles

• Principle #1: Favor simplicity

• Principle #2: Trust with reluctance

• Principle #3: Defend in depth

• Principle #4: Monitor and trace

43

44

