
Serverless Architecture
Software Architecture

Richard Thomas

May 6, 2024



Oxymoron 1. Serverless

Logic running on someone else’s server.



Definition 1. Backend as a Service (BaaS)

Cloud-hosted applications or services that deliver

functionality used by an application front-end.



BaaS Iceberg[Brunko, 2019]



BaaS Example



Definition 2. Functions as a Service (FaaS)

Application logic that is triggered by an event and

runs in a transient , stateless compute node.



FaaS Iceberg[Brunko, 2019]



FaaS Example



Definition 3. Serverless Architecture

Software system delivering functionality through

BaaS or FaaS.



Sahara Browse & Order — Serverless



Sahara Fulfilment — Serverless



Serverless Benefits

• Automatic scaling
• Multiple instances of function

• Reduced cost for dynamic loads
• No server idle time

• Reduced server management
• Easier to run closer to client

• Launch in same zone as client



Serverless Benefits

• Automatic scaling
• Multiple instances of function

• Reduced cost for dynamic loads
• No server idle time

• Reduced server management
• Easier to run closer to client

• Launch in same zone as client



Serverless Benefits

• Automatic scaling
• Multiple instances of function

• Reduced cost for dynamic loads
• No server idle time

• Reduced server management

• Easier to run closer to client
• Launch in same zone as client



Serverless Benefits

• Automatic scaling
• Multiple instances of function

• Reduced cost for dynamic loads
• No server idle time

• Reduced server management
• Easier to run closer to client

• Launch in same zone as client



BaaS Tradeoffs

• Front-end accesses database directly
• Front-end needs to sanitise inputs
• Easy to spoof messages from front-end

• Hope DB provider is secure

• Application logic is in front-end
• Less modularisation
• Duplication of logic with multiple front-ends

• Web, mobile, . . .

• No control over server optimisation



BaaS Tradeoffs

• Front-end accesses database directly
• Front-end needs to sanitise inputs
• Easy to spoof messages from front-end

• Hope DB provider is secure

• Application logic is in front-end
• Less modularisation
• Duplication of logic with multiple front-ends

• Web, mobile, . . .

• No control over server optimisation



BaaS Tradeoffs

• Front-end accesses database directly
• Front-end needs to sanitise inputs
• Easy to spoof messages from front-end

• Hope DB provider is secure

• Application logic is in front-end
• Less modularisation
• Duplication of logic with multiple front-ends

• Web, mobile, . . .

• No control over server optimisation



FaaS Tradeoffs

• No server state
• All state needs to be saved (e.g. Redis, S3, . . . )

• Not just persistent state

• Execution duration
• Can’t be long running process

• AWS Lambda – up to 15 minutes

• Startup latency
• Functions take time to start

• Some languages worse than others (e.g. Java)

• Proliferation of functions
• Loss of encapsulation



FaaS Tradeoffs

• No server state
• All state needs to be saved (e.g. Redis, S3, . . . )

• Not just persistent state

• Execution duration
• Can’t be long running process

• AWS Lambda – up to 15 minutes

• Startup latency
• Functions take time to start

• Some languages worse than others (e.g. Java)

• Proliferation of functions
• Loss of encapsulation



FaaS Tradeoffs

• No server state
• All state needs to be saved (e.g. Redis, S3, . . . )

• Not just persistent state

• Execution duration
• Can’t be long running process

• AWS Lambda – up to 15 minutes

• Startup latency
• Functions take time to start

• Some languages worse than others (e.g. Java)

• Proliferation of functions
• Loss of encapsulation



FaaS Tradeoffs

• No server state
• All state needs to be saved (e.g. Redis, S3, . . . )

• Not just persistent state

• Execution duration
• Can’t be long running process

• AWS Lambda – up to 15 minutes

• Startup latency
• Functions take time to start

• Some languages worse than others (e.g. Java)

• Proliferation of functions
• Loss of encapsulation



Question

When is serverless appropriate?



Question

When is serverless appropriate?

Answer

• Rich client apps with common backend
• BaaS

• High latency processing
• Within function duration constraints

• Apps with variable load
• Take advantage of auto-scaling



Question

When is serverless appropriate?

Answer

• Rich client apps with common backend
• BaaS

• High latency processing
• Within function duration constraints

• Apps with variable load
• Take advantage of auto-scaling



Question

When is serverless appropriate?

Answer

• Rich client apps with common backend
• BaaS

• High latency processing
• Within function duration constraints

• Apps with variable load
• Take advantage of auto-scaling



Question

When is serverless not appropriate?



Question

When is serverless not appropriate?

Answer

• Quick response required
• Can’t wait for FaaS to start

• Compute intensive processing

• Apps with steady load
• Server-based approaches are cheaper



Question

When is serverless not appropriate?

Answer

• Quick response required
• Can’t wait for FaaS to start

• Compute intensive processing

• Apps with steady load
• Server-based approaches are cheaper



Question

When is serverless not appropriate?

Answer

• Quick response required
• Can’t wait for FaaS to start

• Compute intensive processing

• Apps with steady load
• Server-based approaches are cheaper



Self-Study Exercise

• Redesign your scalability assignment to be
serverless.
• What parts of your design would benefit from

being serverless?

• Implement your revised design.



Pros & Cons

Extensibility

Reliability

Interoperability

Scalability

Deployability

Modularity

Testability

Maintainability

Security

Simplicity



References

[Brunko, 2019] Brunko, P. (2019).
Serverless architecture: When to use this approach and what benefits it gives.
https://apiko.com/blog/serverless-architecture-benefits/.

https://apiko.com/blog/serverless-architecture-benefits/

