Serverless Architecture

Software Architecture

Richard Thomas

May 6, 2024

Ozymoron 1. Serverless

Logic running on someone else’s server.

Definition 1. Backend as a Service (BaaS)

Cloud-hosted applications or services that deliver
functionality used by an application front-end.

[Brunko, 2019]

BaaS Iceberg

Frontend
Developer builds

- User interface
- Client-side project

Vendor provides as a service

- Database management
- Cloud storage

- User authentication

- Push notifications

- Hosting

BaaS Example

Pay for
purchases.

Payment Provider
[Software System]

Payment facilities provided by Stripe.

Authorisation Service
[Software System]

tication provided by
ho.

e

Pay for

purchases.

P

Authenticate
user.

e

Authenticate

user.

~

-

|

|

|

|

|

|
T

|

|
s

Simple Mobile
App

[Container: React Native]

Allows customers to
browse and search for
items and to order
% them. N
e ~N

Web Application

[Container: React]

Delivers the web front-end for the
on-line store.

Simple On-line Store
[Software System]

|
|
|
|
|
|

|
|
|
|
‘\

Save order. —

Search for
products.

__ Search for
products.

Order Database
[Software System]

g

Google cloud SQL database storing

orders.

Product Database
[Software System]
=]

<

Google cloud SQL database storing
product details.

Save order.

Definition 2. Functions as a Service (FaaS)

Application logic that is triggered by an event and
runs in a transient, stateless compute node.

[Brunko, 2019]

FaaS Iceberg

Frontend
Developer builds

- User interface
- Client-side project

API

Developer builds Vendor provides as a service
Backend
- Server-side logic - Hosting
- Scaling
- Optimization
- Enforces modularity

FaaS Example

Simple FaaS Web
Application

from Simple Faas Onvline Store

Delivers the web front-end for the
on-line store. L.

Web Browser Search for
[Deployment Node: Chrorme, Firefos, Safari or Edge] products.
: " |mesT AP sONHTTPS]
Customer's Computer
[Deployment Node: M Windows, Apple macOS or Linux]

Search for

REST AP SON/HTTPS]
Simple Faas -
Mobile App

from Simple Faas Onine Store
[Container: React Nativel

—

Allows customers to
browse and search for
items and to order

ther

Customer’s Mobile Device
[Deployment Nadie: Android or 105]

API Gateway
from APl Gateway
[Container]

AWS AP| Gateway.

API Gatew:
[Deployment Node]

AWS Services
[Deployment Node]

Send Purchase
Request
[[REST AP1JSON/HTTPS]

~
Send Search

[REST AP JSON/HTTPS]
~

Purchase Products
from Purchase Products
[Container: Javal

Provides backend logic for
purchasing products.

Purchase Products Function
[Deployment Node: Java]

Search for Product
from Search for Product
(Container: Javal

Find product from customer's query.

W Product Search Function
i (Deployment Node: Javal

— Store Order —
[REST AP JSON/HTTPS]

~ Search Query —
[REST API [SON/HTTPS]

Order Database
Database Host
onanet whaaraty

MysQL

Database storing orders.

Order Database
[Deployment Node]

Product Database
from Prodiuct Database Host
Container: MySQL.0)

MysQL

Database storing product details.

7] Product Database

[Deployment Nods]

Definition 3. Serverless Architecture

Software system delivering functionality through
BaaS or Faas.

Sahara Browse & Order

Authorisation Service
from Authorisation Ser
[

ner]

User authentication provided by
Autho

Authorisation Service
[Deployment Nocie]

Authsr\t\utﬂ
Customer
[REST APIJSONHTTPS]

Sahara Web Application
from Sahara Onine Store
[Container: Reactl

Delivers the web front-end for the
n-line store.

Web Browser
[Deployment Node: Chrame, Firefox, Safar o Edge]

Customer’s Computer
[eployment Node: M5 Windows, Apple macOS or Linud]

Requests
st A sonTeS1

Serverless

Product Database Message Queue

Order Database

from Product Database Hose from Message Queue from Order Database Host
[Container: WySQL 5.0 (Contaier] Container MySQLE0]
WL e ysqL
Database storing product details. AWS SQs. Database storing orders.
v i v 7y
) Proguct Dambasc M('ssﬂgr' Queue W) Order Database
[Deployment Node] \ e Nocel | 6 eployment Node]
/ search Query Order Paid Event Update Order Store Order
REST APLSONTTFS] essgel REST AP [SON/HTTPS REST APISONIHTTFS]
pa -
/
/ SEarenlorEradnes Payment Confirmed Purchase Products
/ from Payment Confrmed from Purchase products
ey s ‘["P' TS [Container: Java] [Container: Java]

. & java)
Find & Retrieve
Product Details
[REST AP JSON/HTTPS)
7

Find product from customer's query W AT RS

Save order and initiate payment
processing

/
/ v
Product Search Fynction /ﬂpamew Confirmed Function
[Deployment Nod: Javal
send search Payment
ery Confrmed
REsT AR ORHTIS] REST API Ps)

Send Purchase
_ Request
- [REST API [SON/HTTPS]

API Gateway
from APl Gateway
Send Function Container

AWS API Gateway.

APl Gateway
[Depiaymen: Nod:

&

AWS Services
[Deployment Node]

Payment

nfirmed
REST APIJSON/HTTPS]

Purchase Products Funcion N
1Depl Jopl

N

Process Payment

NiH

Ps)

N

Payment Provider

ent Provider

[Container]

Payment facilities provided by Stripe.

Payment Provider
[Dzployment Nage]

Sahara Fulfilment

Authorlsatlon Service

Contaier)

User authentication provided by
Autho

Authorisation Service |
[Deployment Node]
Authenticate

REST APLISONHTTPS)]

Sahara Web Application
Sahara On-ine Store
" ICantainer: Reac

Delivers the web front-end for the
on-fine store.

Web Browser
[Deployment Nede: Chrome, Fireos, Safor or Edge]

Customer's Comput
| Deployment Node: [——

REST 4P1 SONIHTTPS]
s

__ Order status ~

-

Send Function

REST AP [SONHTTPS]

Serverless

APl Gateway
from AP Gatewsy
Container]

AWS API Gateway.

/AP\ Gi
s
AR St | N
Blowommiees | 2

order

Rt order shipped
‘ pest i sonTE]
| N
N
v

Order Status
from Orcier Status
Container:fava]

Respond to customer query with

Order Shipped
from Order hippecd
et

Send email to customer with

i eI G,
Query Order Upda!eﬂvdev Order Shipped
Status Details Event
| . |
v » A A

Order Database
from Order Database Host
Container: 5L £0]

Message Queue

from Message Queue

AWS Services

[Deployment Nodel

tainer]
MysQL ~
Database storing orders. AWS 505,
Message Queue
Deployment Nodel
Query Order

- tails -
REST APLISON/HTTPS]

- Order shipped — — —
[REST 491 SONIHTTS)

Email Service
from Eml Serice

AWS SES.
Email Service
[Deployment Node]

Send Order
Shipped Message

2

s

Lambda Service

AWS Lambda Service polls Message
Queue and batches messages to
send to Lambda Functions.

a Service
1 (0cpioyment Nodel |

Poll for Messages Ship Order
Wessage Batch
i

s

Order Picking

send pick st for order to warehouse.

Full Order Function
Deploy Java

s

Fulfilment App
fram Sahara Onine Store
(Container: Reset Natve)

Coordinates fulfliment
of orders.

A
Fulfilment Mobile Device

[Deploymen Norie: Android o 1051

7
Send Pick List
Hres)
/

Serverless Benefits

e Automatic scaling

e Multiple instances of function

Serverless Benefits

e Automatic scaling

e Multiple instances of function

e Reduced cost for dynamic loads

e No server idle time

Serverless Benefits

e Automatic scaling
e Multiple instances of function
e Reduced cost for dynamic loads

e No server idle time

® Reduced server management

Serverless Benefits

e Automatic scaling

e Multiple instances of function

e Reduced cost for dynamic loads
® No server idle time

e Reduced server management

e Fasier to run closer to client

e Launch in same zone as client

BaaS Tradeoffs

® Front-end accesses database directly
® Front-end needs to sanitise inputs
e Basy to spoof messages from front-end
® Hope DB provider is secure

BaaS Tradeoffs

® Front-end accesses database directly
® Front-end needs to sanitise inputs
e Basy to spoof messages from front-end
® Hope DB provider is secure

e Application logic is in front-end
® Less modularisation
® Duplication of logic with multiple front-ends
* Web, mobile, ...

BaaS Tradeoffs

® Front-end accesses database directly
® Front-end needs to sanitise inputs
e Basy to spoof messages from front-end
® Hope DB provider is secure

e Application logic is in front-end
® Less modularisation
® Duplication of logic with multiple front-ends
* Web, mobile, ...

e No control over server optimisation

FaaS Tradeoffs
® No server state
 All state needs to be saved (e.g. Redis, S3, ...)

® Not just persistent state

FaaS Tradeoffs
e No server state
 All state needs to be saved (e.g. Redis, S3, ...)
® Not just persistent state
e Execution duration
e Can’t be long running process
e AWS Lambda — up to 15 minutes

FaaS Tradeoffs
e No server state
» All state needs to be saved (e.g. Redis, S3, ...
® Not just persistent state
e Execution duration
e Can’t be long running process
e AWS Lambda — up to 15 minutes

e Startup latency
® Functions take time to start
® Some languages worse than others (e.g. Java)

FaaS Tradeoffs
e No server state
» All state needs to be saved (e.g. Redis, S3, ...

® Not just persistent state

e Execution duration
e Can’t be long running process
e AWS Lambda — up to 15 minutes

e Startup latency
® Functions take time to start
® Some languages worse than others (e.g. Java)

e Proliferation of functions
® Loss of encapsulation

Question

When is serverless appropriate?

Question

When is serverless appropriate?

Answer

e Rich client apps with common backend
* BaaS

Question

When is serverless appropriate?

Answer

e Rich client apps with common backend
* BaaS

e High latency processing

e Within function duration constraints

Question

When is serverless appropriate?

Answer

e Rich client apps with common backend
* BaaS

e High latency processing

e Within function duration constraints

e Apps with variable load

® Take advantage of auto-scaling

Question

When is serverless not appropriate?

Question

When is serverless not appropriate?

Answer

e (Quick response required
® Can’t wait for FaaS to start

Question

When is serverless not appropriate?

Answer

e (Quick response required
® Can’t wait for FaaS to start

e Compute intensive processing

Question

When is serverless not appropriate?

Answer

e (Quick response required
® Can’t wait for FaaS to start

e Compute intensive processing

e Apps with steady load

® Server-based approaches are cheaper

Self-Study Fxercise

® Redesign your scalability assignment to be
serverless.

e What parts of your design would benefit from
being serverless?

e Implement your revised design.

Pros & Cons

Extensibility
Reliability
Interoperability
Scalability
Deployability
Modularity
Testability
Maintainability
Security
Simplicity

AR AR ‘@) ‘&) &) &) &)
Bleleeceeee
& e = = = O U U O o

References

Brunko, 2019] Brunko, P. (2019).
Serverless architecture: When to use this approach and what benefits it gives.
https://apiko.com/blog/serverless-architecture-benefits/.

https://apiko.com/blog/serverless-architecture-benefits/

