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Oxymoron 1. Serverless

Logic running on someone else’s server.



Definition 1. Backend as a Service (BaaS)

Cloud-hosted applications or services that deliver

functionality used by an application front-end.



BaaS Iceberg[Brunko, 2019]



BaaS Example



Definition 2. Functions as a Service (FaaS)

Application logic that is triggered by an event and

runs in a transient , stateless compute node.



FaaS Iceberg[Brunko, 2019]



FaaS Example



Definition 3. Serverless Architecture

Software system delivering functionality through

BaaS or FaaS.



Sahara Browse & Order — Serverless



Sahara Fulfilment — Serverless
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• Automatic scaling
• Multiple instances of function

• Reduced cost for dynamic loads
• No server idle time

• Reduced server management
• Easier to run closer to client

• Launch in same zone as client
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BaaS Tradeoffs

• Front-end accesses database directly
• Front-end needs to sanitise inputs
• Easy to spoof messages from front-end

• Hope DB provider is secure

• Application logic is in front-end
• Less modularisation
• Duplication of logic with multiple front-ends

• Web, mobile, . . .

• No control over server optimisation
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• No server state
• All state needs to be saved (e.g. Redis, S3, . . . )

• Not just persistent state

• Execution duration
• Can’t be long running process

• AWS Lambda – up to 15 minutes

• Startup latency
• Functions take time to start

• Some languages worse than others (e.g. Java)

• Proliferation of functions
• Loss of encapsulation
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Self-Study Exercise

• Redesign your scalability assignment to be
serverless.
• What parts of your design would benefit from

being serverless?

• Implement your revised design.



Pros & Cons

Extensibility

Reliability

Interoperability

Scalability

Deployability

Modularity

Testability

Maintainability

Security

Simplicity
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