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Ozymoron 1. Serverless

Logic running on someone else’s server.




Definition 1. Backend as a Service (BaaS)

Cloud-hosted applications or services that deliver
functionality used by an application front-end.
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BaaS Iceberg

Frontend
Developer builds

- User interface
- Client-side project

Vendor provides as a service

- Database management
- Cloud storage

- User authentication

- Push notifications

- Hosting
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Definition 2. Functions as a Service (FaaS)

Application logic that is triggered by an event and
runs in a transient, stateless compute node.
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FaaS Iceberg

Frontend
Developer builds

- User interface
- Client-side project

API

Developer builds Vendor provides as a service
Backend
- Server-side logic - Hosting
- Scaling
- Optimization
- Enforces modularity




FaaS Example
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Definition 3. Serverless Architecture

Software system delivering functionality through
BaaS or Faas.
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Serverless Benefits

e Automatic scaling

e Multiple instances of function

e Reduced cost for dynamic loads
® No server idle time

e Reduced server management

e Fasier to run closer to client

e Launch in same zone as client



BaaS Tradeoffs

® Front-end accesses database directly
® Front-end needs to sanitise inputs
e Basy to spoof messages from front-end
® Hope DB provider is secure



BaaS Tradeoffs

® Front-end accesses database directly
® Front-end needs to sanitise inputs
e Basy to spoof messages from front-end
® Hope DB provider is secure

e Application logic is in front-end
® Less modularisation
® Duplication of logic with multiple front-ends
* Web, mobile, ...



BaaS Tradeoffs

® Front-end accesses database directly
® Front-end needs to sanitise inputs
e Basy to spoof messages from front-end
® Hope DB provider is secure

e Application logic is in front-end
® Less modularisation
® Duplication of logic with multiple front-ends
* Web, mobile, ...

e No control over server optimisation
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FaaS Tradeoffs
e No server state
» All state needs to be saved (e.g. Redis, S3, ...

® Not just persistent state

e Execution duration
e Can’t be long running process
e AWS Lambda — up to 15 minutes

e Startup latency
® Functions take time to start
® Some languages worse than others (e.g. Java)

e Proliferation of functions
® Loss of encapsulation
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Question

When is serverless appropriate?

Answer

e Rich client apps with common backend
* BaaS

e High latency processing

e Within function duration constraints

e Apps with variable load

® Take advantage of auto-scaling
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Question

When is serverless not appropriate?

Answer

e (Quick response required
® Can’t wait for FaaS to start

e Compute intensive processing

e Apps with steady load

® Server-based approaches are cheaper



Self-Study Fxercise

® Redesign your scalability assignment to be
serverless.

e What parts of your design would benefit from
being serverless?

e Implement your revised design.



Pros & Cons

Extensibility
Reliability
Interoperability
Scalability
Deployability
Modularity
Testability
Maintainability
Security
Simplicity
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