
Last Updated on 2025/03/07

CodegramWrite-Up Software Architecture
March 3, 2025 Brae Webb & Richard Thomas

1 Design Overview
Using a pipeline architecture can be an effective solution to implement the image filter feature for Code-gram. A pipeline architecture breaks down the image filtering process into a sequence of smaller, moremanageable steps that can be executed in series.To simplify the implementation, each step in the pipeline is implemented as a separate function. Thefunctions are called in sequence to form a pipeline.The incoming HTTP request will specify the image and the steps of filters to apply. This allows theimage to be processed in a single pass through the pipeline.
2 Discussion
Which quality attributes are prioritised in this design Our design prioritises simplicity and to an extentextensibility. A pipeline is a conceptually simple way to think about filtering. We have also prioritisedsimplicity by implementing each step of the pipeline as a separate function, rather than different modulesor programs. Extensibility is a priority because the pipeline can be easily extended by adding new functionsto the pipeline.
How would you extend this design to support more filters? To support more filters, we would add anew function to the pipeline. The function would take an image as input and return a new image with thefilter applied.
Are there trade-offs in this design? We are trading off extensibility for simplicity to some extent. If wewere to implement each step of the pipeline as a separate module, we could easily add new steps tothe pipeline without modifying the existing code. However, this could make the code more complex andharder to understand.We are also trading off scalability for simplicity. Each filter could be implemented as a separate end-point. This would allow the filters to be scaled independently and reduce latency on the less popular filters.However, this would make the code more complex and harder to understand.
3 Sketching

3.1 Overview
In our minimal implementation we will implement each filter as a separate function.

• Each function will take configuration options and an image as input and return a new image with thefilter applied.
• The configuration options will be a dictionary of key-value pairs, allowing arbitrary configuration op-tions to be passed to each filter. Using a dictionary also allows the configuration options to be passedto the filter as a JSON object from the HTTP request.

1

• The HTTP request will specify the image and the steps of filters to apply.
• A Flask service will process the HTTP request and call the appropriate filter functions in sequence.
• The resulting image will be returned to the client.

3.2 HTTP Request and Response
The HTTP request will use the POST method and send the request body as a JSON object.

• The JSON object will have an image field containing the URL to the image to be filtered.
• The JSON object will also have a filters field containing a list of filters to apply to the image.
• Each filter will be a map containing a name field specifying the name of the filter to apply and a
params field containing the key-value pairs of configuration options to pass to the filter.

The HTTP response will be the filtered image.
3.3 Example HTTP Request
The following is an example HTTP request to apply the grayscale, brightness, and blur filters to animage.

» cat request

 {
 "image": "https://repository-images.githubusercontent.com/367934588/4a27ae00-b73b

-11eb-801b-36dd1756dc93",
 "filters": [
 {
 "name": "grayscale",
 "parameters": {}
 },
 {
 "name": "brightness",
 "parameters": {
 "amount": 0.5
 }
 },
 {
 "name": "blur",
 "parameters": {
 "kernel_size": 3
 }
 },
]
 }

2

3.4 Diagram
A possible diagram of the design is shown below.

Figure 1: Design Diagram

4 Optimisation
What are the time/computation consuming parts of your design? The time consuming parts of ourdesign are the image processing steps. This computation is inherent to the image filtering feature. Wehaveminimised the amount of web requests by batching the image processing steps into a single request.
Are there any bottlenecks? The bottleneck in our design is the image processing steps. Again, this isinherent to the image filtering feature.
Are there any use cases that you can optimise? Wecurrently optimise the use casewhere the userwantsto apply multiple filters to the same image.We could also optimise the use case where the user wants to apply the same filter to multiple imagesby including an array of images in the request.We could optimise applying repeated filters by caching the results of the filters.
How would you scale your design to support more users? We would horizontally scale the image pro-cessing steps. This would allow us to scale the image processing steps independently of the web server.Adding filtering requests to a queuewould also allowus to scale theweb server independently of the imageprocessing steps.
Are there any security concerns? Images are given to the filtering service as a public URL. This meansthat all user images are publicly accessible, which may be a security concern of the system but is not aconcern of the image filtering feature.

3

5 Design Challenges

5.1 Malicious Images
As we process filtering steps in bulk, the original image may be malicious. We could, at the point of pro-cessing, check the hash of the image to ensure that it is not malicious. However, this does not account forapplying the filter service multiple times.Additionally, this is inflexible as our database of malicious images is likely to be updated frequentlywhich is why Codegram does a periodic scan. Instead we should store the hash pairs of the original andfiltered images in a database. This allows us to extend our malicious image detection to include hashes offiltered images. However, this approach could be expensive as we could require a much larger malicioushash list. We could instead store the hash of the original image with each filtered image and check thishash during the scan.
5.2 Reordering Filters
Formost filters, the order in which they are applied does notmatter. This gives us the ability to improve theperformance of repeated filter queries in different orders by caching the results of the filters. Onemethodof caching the results would be to sort the filters by name in the request and hash the resulting request,then store amapping from the hash to the filtered image. This would allow us to quickly return the filteredimage if the request is repeated in any order.However, this approach does not work for filters that depend on the order in which they are applied.As an obvious example, say we have an advanced filter that adds coloured party hats on each semi-colonin the image. If we apply this filter before the grayscale filter, the hats will be coloured. We would need toflag this filter as order dependent and not cache the results. This could be done by a naming conventionsuch as order_dependent_party_hats. Or we could keep a list of order dependent filters in the code.This would limit the extensibility of the system, so we need to consider the benefits based on what are oursystem priorities.
5.3 Global Access
To optimise for global access, we can consider using a distributed system or a CDN to store and serve thefiltered images. This would allow users to access their images from a location close to them and reducelatency.
6 Programming Challenge

» cat pipeline.py

 import cv2
 import numpy as np
 import requests
 from flask import Flask, request, send_file

 def read_image(url):
 response = requests.get(url)
 image = np.asarray(bytearray(response.content), dtype="uint8")
 image = cv2.imdecode(image, cv2.IMREAD_COLOR)

4

 return image

 def brightness(image, amount):
 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
 hsv = np.array(hsv, dtype=np.float64)
 hsv[:, :, 1] = hsv[:, :, 1] * amount
 hsv[:, :, 1][hsv[:, :, 1] > 255] = 255
 hsv[:, :, 2] = hsv[:, :, 2] * amount
 hsv[:, :, 2][hsv[:, :, 2] > 255] = 255
 hsv = np.array(hsv, dtype=np.uint8)
 image = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
 return image

 def contrast(image, amount):
 image = np.array(image, dtype=np.float64)
 image = (image - 128) * amount + 128
 image[image > 255] = 255
 image[image < 0] = 0
 image = np.array(image, dtype=np.uint8)
 return image

 def saturation(image, amount):
 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
 hsv = np.array(hsv, dtype=np.float64)
 hsv[:, :, 1] = hsv[:, :, 1] * amount
 hsv[:, :, 1][hsv[:, :, 1] > 255] = 255
 hsv = np.array(hsv, dtype=np.uint8)
 image = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
 return image

 def grayscale(image):
 return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 def sepia(image):
 return cv2.transform(image, np.matrix([[0.272, 0.534, 0.131],
 [0.349, 0.686, 0.168],
 [0.393, 0.769, 0.189]]))

 def blur(image, kernel_size):
 return cv2.blur(image, (kernel_size, kernel_size))

 def pipeline(image, filters):
 for filter_func, params in filters:
 image = filter_func(image, **params)
 return image

 app = Flask(__name__)

 @app.route('/filter', methods=['POST'])
 def filter():

5

 data = request.get_json()
 image = read_image(data['image'])
 filters = [
 (globals()[filter['name']], filter['parameters'])
 for filter in data['filters']
]
 image = pipeline(image, filters)
 return send_file(cv2.imencode('.jpg', image)[1].tobytes(),
 mimetype='image/jpeg')

 if __name__ == '__main__':
 app.run()

6

	Codegram Write-Up
	Design Overview
	Discussion
	Sketching
	Overview
	HTTP Request and Response
	Example HTTP Request
	Diagram

	Optimisation
	Design Challenges
	Malicious Images
	Reordering Filters
	Global Access

	Programming Challenge

